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About this Course

Artificial intelligence (AI) is transforming economics and finance, from credit risk assessment
to economic forecasting and policy analysis. Recent breakthroughs in machine learning and
generative AI have opened unprecedented opportunities for researchers and practitioners to
extract insights from vast datasets and automate complex analytical tasks.

This course provides a hands-on introduction to the AI techniques driving these changes. While
we explore the theoretical foundations necessary to understand how these methods work, our
primary focus is on practical implementation. You will learn to build, and train machine
learning models using Python, the dominant language in AI and data science. Through a
combination of conceptual understanding and applied programming, you will gain the skills
needed to harness AI for tackling real-world problems in economics, finance, and beyond.

Learning Objectives

By the end of this course, you will be able to:

• Understand core AI concepts: Grasp the fundamental principles behind supervised
learning, natural language processing, and generative AI that drive modern applications
in economics and finance

• Implement machine learning models: Build and train decision trees, neural networks,
and other ML algorithms to solve prediction and classification problems using real-world
datasets

• Process and analyze text data: Apply natural language processing techniques to
extract insights from textual sources such as financial reports, news articles, and policy
documents

• Leverage generative AI: Work with large language models (LLMs) programmatically
through APIs, going beyond chatbot interactions to automate tasks and build AI-powered
applications

• Use Python for data science: Write Python code using industry-standard libraries
for data manipulation, visualization, and machine learning
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Course Structure

This course is divided into four parts, each focusing on different aspects of AI and big data:

• Part I: Foundations

1. Introduction to Artificial Intelligence and Big Data
2. Introduction to Python

• Part II: Supervised Machine Learning

3. Overview of Supervised Learning
4. Decision Trees
5. Neural Networks
6. Practice Session I

• Part III: Natural Language Processing

7. Overview of Natural Language Processing (NLP)
8. Classical NLP Approaches
9. Practice session II

• Part IV: Generative AI

10. Overview of Generative AI
11. Large Language Models (LLMs)
12. Practice session III

Prerequisites

This course is designed to be accessible to students with diverse backgrounds. The
following will help you get the most out of the course:

• Statistics and probability: A basic understanding of statistical concepts (mean,
variance, distributions) and probability theory at the undergraduate level.

• Mathematics: Familiarity with linear algebra (vectors, matrices) and calculus (deriva-
tives, gradients) will be helpful for understanding how machine learning algorithms work
under the hood. However, we will try not to go too deeply into the mathematics. Instead,
we focus on building intuition about how models work and on practical implementation.

The following is explicitly not required :

• Programming experience: Prior programming knowledge is helpful but not required.
We introduce Python from the ground up in Part I, covering all necessary programming
concepts for the course.

• Machine learning background: No prior experience with AI or machine learning is
expected. We start with the fundamentals and build up to advanced topics.
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Useful Resources

The course does not follow a particular textbook but has drawn material from several sources
such as

• Hastie, Tibshirani, and Friedman (2009), “The Elements of Statistical Learning”
• Murphy (2012), “Machine Learning: A Probabilistic Perspective”
• Murphy (2022), “Probabilistic Machine Learning: An Introduction”
• Murphy (2023), “Probabilistic Machine Learning: Advanced Topics”
• Goodfellow, Bengio, and Courville (2016), “Deep Learning”
• Bishop (2006), “Pattern Recognition And Machine Learning”
• Nielsen (2019), “Neural Networks and Deep Learning”
• Sutton and Barto (2018), “Reinforcement Learning: An Introduction”

Note that all of these books are officially available for free in the form of PDFs or online
versions (see the links in the references). However, you are not required to read them and, as a
word of warning, the books go much deeper into the mathematical theory behind the machine
learning techniques than we will in this course. Nevertheless, you may find them useful if you
want to learn more about the subject.

Regarding programming in Python, McKinney (2022) “Python for Data Analysis” might
serve as a good reference book. The book is available for free online and covers a lot of the
material we will be using in this course. You can find it here: Python for Data Analysis.

Software Installation Notes

In this course, we will use Nuvolos to run all Python code, which provides a pre-configured
environment with all the necessary packages. If you would like to set up a local Python
environment on your computer instead, you can use the following guide. We use the
Anaconda distribution, which simplifies package management and ensures everyone has a
consistent development environment. For code editing and running Jupyter notebooks, we use
Visual Studio Code (VS Code), a powerful and beginner-friendly code editor.

The following instructions will guide you through installing Python, creating a dedicated
environment for this course, and setting up VS Code on your machine.

Anaconda Installation

The first step is to install the Anaconda distribution:
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1. Download the Anaconda distribution from anaconda.com. Note: If you are using a M1
Mac (or newer), you have to choose the 64-Bit (Apple silicon) Graphical Installer. With
an older Intel Mac, you can choose the 64-Bit (Intel chip) Graphical Installer. With
Windows, you can choose the 64-Bit Graphical Installer (i.e., the only Windows option).

2. Open the installer that you have downloaded in the previous step and follow the on-screen
instructions.

3. If it asks you to update Anaconda Navigator at the end, you can click Yes (to agree to
the update), Yes (to quit Anaconda Navigator) and then Update Now (to actually start
the update).

To confirm that the installation was successful, you can open a terminal window on
macOS/Linux or an Anaconda Prompt if you are on Windows and run the following command:

conda --version

This should display the version of Conda that you have installed. If you see an error message,
the installation was likely not successful and you should ask for advice from your peers or send
me an email.
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Figure 1: Terminal Output after Anaconda Installation

Creating a Conda Environment

Next, we want to create a new environment for this course that contains the correct Python
version and all the Python packages we need. We can do this by creating a new Conda
environment from the environment.yml provided on Moodle.

1. Open a terminal window on macOS/Linux or an Anaconda Prompt if you are on Windows.

2. There are two ways to create the Conda environment:

Option A: Run the following command from the terminal or Anaconda Prompt:

conda env create -f https://aibigdata.joelmarbet.com/environment.yml

This downloads the environment.yml file automatically and creates the environment.

Option B: Download the environment.yml file manually:
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i. Navigate to the folder where you have downloaded the environment.yml file. On
macOS/Linux, you can do this by running the following command in the terminal:

cd ~/Downloads

which will navigate to the Downloads folder in your home directory.

On Windows, you can do this by running the following command in the Anaconda
Prompt:

cd "%userprofile%/Downloads"

which will navigate to the Downloads folder in your user profile.

Note that if you use a different path that contains space you need to put the path
in quotes, e.g., cd "~/My Downloads".

ii. Create a new Conda environment from the environment.yml file by running the
following command in the terminal or Anaconda Prompt:

conda env create -f environment.yml

Either option will create a new Conda environment called ai-big-data-cemfi with the
correct Python version and all the Python packages we need for this course. Note that
the installation might take a few minutes.

3. Activate the new Conda environment by running the following command in the terminal
or Anaconda Prompt:

conda activate ai-big-data-cemfi

To confirm that the environment was created successfully, you can run the following
command in the terminal or Anaconda Prompt:

conda env list

This should display a list of all Conda environments on your machine, with an asterisk (*) next
to the currently active environment. You should see ai-big-data-cemfi in the list.
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Figure 2: Terminal Output From Environment Creation

LIGHTBULB Resetting or Updating a Conda Environment

If you accidentally make changes to the environment and want to reset it to the orig-
inal state, you can do this by navigating to the folder where you have downloaded
environment.yml and then running the following command in the terminal or Anaconda
Prompt:

conda env update --file environment.yml --prune

Alternatively, you can also update the environment by running the following command in
the terminal or Anaconda Prompt, which downloads the environment.yml file automatically
from the course website:

conda env update --file https://aibigdata.joelmarbet.com/environment.yml
--prune
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This can also be used to update the environment if we add new packages to the
environment.yml file.

Installing VS Code

The last step is to install the Visual Studio Code (VS Code) editor:

1. Download the Visual Studio Code editor from code.visualstudio.com.
2. Open the installer that you have downloaded in the previous step and follow the on-screen

instructions.

We also need to install some VS Code extensions that will help us with Python programming
and Jupyter notebooks:

1. Open VS Code.

2. Click on the Extensions icon on the left sidebar (or press Cmd+Shift+X on macOS or
Ctrl+Shift+X on Windows).
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Figure 3: Installing Extensions in VSCode

3. Search for Python and click on the Install button for the extension that is provided by
Microsoft.

4. Search for Jupyter and click on the Install button for the extension that is provided
by Microsoft.

Testing the Installation

To test the installation, you can download a Juypter notebook from Moodle and open it in VS
Code:

1. Open the Jupyter notebook in VS Code.
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2. Click on Select Kernel in the top right corner of the notebook and choose the ai-big-
data-cemfi kernel.

Figure 4: VSCode Jupyter Kernel Selection

3. Run the first cell of the notebook by clicking on the Execute Cell button next to the
cell on the left.

If you see the output of the cell (or a green check mark below the cell), the installation was
successful.

LIGHTBULB Running Jupyter Notebooks in the Browser

If you have issues running Jupyter notebooks in VSCode, you can also run them in the
browser. To do this, you can open a terminal window on macOS/Linux or an Anaconda
Prompt if you are on Windows and run the following command:
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jupyter notebook

This will open a new tab in your default browser with the Jupyter notebook interface.
You can then navigate to the folder where you have downloaded the course materials and
open the notebooks from there.
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Part I

Foundations
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Chapter 1

Introduction to AI and Big Data

Artificial intelligence (AI) has seen remarkable progress in recent years, transforming from
a specialized field into everyday technology that millions of people now use for writing, coding,
and problem-solving. These advances have been fueled by machine learning (ML) methods
with a wide variety of applications, including:

• Computer vision (e.g., image recognition, autonomous vehicles),
• Natural language processing (e.g., chatbots, translation, sentiment analysis),
• Speech recognition (e.g., voice assistants),
• Recommendation systems (e.g., Netflix, Amazon, Spotify),

and many more. These tools also have many potential applications in economics and
finance and can be invaluable for extracting information from the ever-growing amounts of
data available. As current (or future) Banco de España employees, you are in a unique position
to work with large datasets that are often not available to the general public. This presents a
unique opportunity to apply these methods to a wide range of problems.

While the field can be technical, barriers to entry are not as high as they may seem.
Modern programming languages like Python, combined with powerful open-source libraries
(e.g., scikit-learn, PyTorch), have made machine learning accessible to practitioners without
requiring a deep background in mathematics or computer science. This course aims to provide
you with the foundational knowledge and practical tools to apply machine learning methods to
problems in economics and finance.

1.1 How is AI Relevant for You?

You might have heard of some well-known advances in AI from recent years:

• Conversational AI: ChatGPT, Claude, and Gemini respond to complex prompts and
reason through multi-step problems

19

https://openai.com/chatgpt
https://claude.ai
https://gemini.google.com/


• Image generation: Midjourney, DALL-E 3, and Stable Diffusion create photorealistic
images from text descriptions

• Code assistants: GitHub Copilot and Claude Code help programmers generate and
edit code

• Video generation: Sora and Veo produce videos from text prompts

These are just a few examples of consumer-facing AI applications.

While these examples are impressive and can be very useful in various contexts. There is a
wide range of potential applications that might be relevant for your work which go beyond
these examples. For example, machine learning methods have been used in practice to

• Predict loan or firm defaults based on financial statements and alternative data,
• Detect fraud patterns in real-time transaction data,
• Automate document processing and information extraction from regulatory filings,
• Monitor news and social media for early warning signals, or
• Forecast macroeconomic indicators and stress test scenarios

to just name a few examples. Bank for International Settlements (2021) and Bank for
International Settlements (2025) provide an overview of how machine learning methods have
been used at central banks in recent years.

To give you a few more ideas from academic research, machine learning techniques have
been used to, for example,

• Detect emotions in voices during press conferences after FOMC meetings (Gorodnichenko,
Pham, and Talavera 2023),

• Identify Monetary Policy Shocks using Natural Language Processing (Aruoba and Drechsel
2022),

• Solve macroeconomic models with heterogeneous agents (Maliar, Maliar, and Winant
2021; Fernández-Villaverde, Hurtado, and Nuño 2023; Fernández-Villaverde et al. 2024;
Kase, Melosi, and Rottner 2022), or

• Estimate structural models with the help of neural networks (Kaji, Manresa, and Pouliot
2023).

Varian (2014), Athey and Imbens (2019), Korinek (2023), and Dell (2025) provide further
examples and discuss how these methods complement traditional econometrics.

Before diving into specific techniques, let’s clarify some terminology and understand where
machine learning fits within the broader field of artificial intelligence.
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1.2 Overview of Artificial Intelligence

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are often used
interchangeably in the media. However, they describe more narrow subfields (Microsoft 2024):

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1.1: Artificial intelligence vs. Machine Learning vs. Deep Learning

• Artificial Intelligence (AI): Any method allowing computers to imitate human behav-
ior.

• Machine Learning (ML): A subset of AI including methods that allow machines to
improve at tasks with experience.

• Deep Learning (DL): A subset of ML using neural networks with many layers allowing
machines to learn how to perform tasks.

More recently, with the rise of large language models (LLMs) such as ChatGPT, several
new terms have become popular:

• Generative AI refers to models that create new content—text, images, music, or video
based on patterns learned from training data. ChatGPT and Midjourney are examples
of generative AI.

• Predictive AI refers to models used to make predictions or classifications based on
input data, such as predicting loan defaults or classifying images.

• Agentic AI refers to systems that can autonomously plan and execute multi-step tasks,
use external tools, and take actions in the real world with minimal human oversight.
Examples include AI coding assistants that can browse documentation, run tests, and
edit files, or AI agents that can book travel or manage emails.

You may also encounter the term Artificial General Intelligence (AGI), which refers to
hypothetical systems capable of human-level reasoning across a wide range of tasks. Unlike
current AI, which excels at specific tasks, AGI would generalize to novel problems without
task-specific training. While AGI is a topic of active research and debate, no consensus exists
on how close we are to achieving it or even how to define it precisely.1 AGI and related concepts

1For more background, see Google Cloud’s overview of AGI.
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are beyond the scope of this course.

1.3 What is Machine Learning?

In this course, we will be mainly concerned with the subfield of artificial intelligence known as
machine learning.

1.3.1 Definition

Murphy (2012) provides a simple definition of machine learning as

[…] a set of methods that can automatically detect patterns in data, and
then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty […]

Therefore, machine learning provides a range of methods for data analysis. In that sense, it is
similar to statistics or econometrics.

A popular, albeit more technical, definition of ML is due to Mitchell (1997):

A computer program is said to learn from experience 𝐸 with respect to some class of
tasks 𝑇, and performance measure 𝑃, if its performance at tasks in 𝑇, as measured
by 𝑃, improves with experience 𝐸.

In the context of this course, experience 𝐸 is given by a dataset that we feed into a machine-
learning algorithm, tasks 𝑇 are usually some form of prediction that we would like to perform
(e.g., loan default prediction), and the performance measure 𝑃 is the measure assessing the
accuracy of our predictions.

1.3.2 Relation of Machine Learning to Statistics and Econometrics

We have already mentioned that machine learning is similar to statistics and econometrics, in
the sense that it provides a set of methods for data analysis. The focus of machine learning is
more on prediction rather than causality meaning that in machine learning we are often
interested in whether we can predict A given B rather than whether B truly causes A. For
example, we could probably predict the sale of sunburn lotion on a day given the sales of ice
cream on the previous day. However, this does not mean that ice cream sales cause sunburn
lotion sales, it is just that the sunny weather on the first day causes both.

Varian (2014) provides another example showing the difference between prediction and causal-
ity:
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A classic example: there are often more police in precincts with high crime, but that
does not imply that increasing the number of police in a precinct would increase
crime. […] If our data were generated by policymakers who assigned police to areas
with high crime, then the observed relationship between police and crime rates
could be highly predictive for the historical data but not useful in predicting the
causal impact of explicitly assigning additional police to a precinct.

Nevertheless, leaving problems aside where we are interested in causality, there is still a very
large range of problems where we are interested in mere prediction, such as loan default
prediction, or credit card fraud detection.

1.4 The Role of Big Data

The term big data refers to datasets that are too large or complex to be processed by traditional
data processing methods. While there is no strict definition and the term is often used as
a buzzword or marketing term, big data is often characterized by the “three Vs” (Laney
2001):

• Volume: The sheer amount of data generated and stored.
• Velocity: The speed at which new data is generated and needs to be processed.
• Variety: The different types of data (structured, unstructured, semi-structured) from

various sources.

In the context of banking and finance, big data sources include:

• Transaction records (credit cards, payments, transfers)
• Customer interactions (call centers, online banking, mobile apps)
• Market data (stock prices, exchange rates, trading volumes)
• Alternative data (social media sentiment, satellite imagery, web scraping)
• Regulatory filings and reports

The combination of big data and machine learning creates a powerful synergy: machine
learning algorithms thrive on large datasets, as more data generally leads to better
pattern recognition and more accurate predictions. Conversely, traditional statistical methods
often struggle with the high dimensionality and complexity of big data, making machine
learning approaches increasingly attractive.

In this course, we will focus on machine learning methods that can, in principle, handle large
datasets effectively. However, due to time constraints and the difficulty of the involved topics,
we will put less emphasis on other important big data aspects such as distributed computing
or data engineering. Varian (2014) provides a brief overview of big data and
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1.5 History of Artificial Intelligence

Early contributions to the field reach back at least to McCulloch and Pitts (1943) and
Rosenblatt (1958). They attempted to find mathematical representations of information
processing in biological systems (Bishop 2006). As pointed out by Schmidhuber (2022), even
earlier contributions in the form of linear regression2 go back to work from Adrien-Marie
Legendre and Johann Carl Friedrich Gauss around 1800, while some of the mathematical tools
at the heart of today’s AI models are even older than that. The term “artificial intelligence”,
however, is much more recent and was coined only in 1956 at a conference at Dartmouth
College (Schmidhuber 2022).

1.5.1 Broad Developments in AI

Given the long history of AI, I will only show some broad developments in the field since the
1950s:

• 1950s-60s: Early work on neural networks (e.g., perceptron by Rosenblatt (1958)) similar
to what is used in deep learning today.

• 1970s-80s: Development of expert systems (e.g., MYCIN). These are computer programs
that mimic the decision-making abilities of a human expert in a specific domain. They
use a set of rules and knowledge bases to make decisions and solve problems.

• 1990s-2000s: Shift towards a more data-driven approach with statistical methods and
machine learning (e.g., support vector machines, decision trees, etc.)

• 2010s: Deep learning revolution (e.g., successful application of neural networks in many
domains such as computer vision, natural language processing, etc.)

• 2020s: Rise of large language models (e.g., GPT-3, ChatGPT) and generative AI (e.g.,
DALL-E, Midjourney)

1.5.2 Why has AI Become So Popular Recently?

The field has grown substantially mainly in recent years due to

• Advances in computational power of personal computers
• Increased availability of large datasets → “big data”
• Improvements in algorithms

Figure 1.2 shows how the number of transistors on a microchip has increased over time.
This increase in computational power has allowed for more complex machine learning algorithms
to be run on personal computers. This trend is often referred to as Moore’s Law which states
that the number of transistors on a microchip doubles approximately every two years. While

2As we will see this can be thought of as a basic form of an artificial neural network.
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the trend has slowed down in recent years, the increase in computational power has been a key
driver for the recent advances in AI.

Figure 1.2: Moore’s Law (Source: OurWorldinData.org)

Figure 1.3 shows how the size of popular datasets in machine learning has increased over
time. Larger datasets allow machine learning algorithms to learn more complex patterns in
the data which often leads to better performance. Note that the figure is in log scale meaning
that for each tick on the y-axis, the dataset size increases by a factor of 10. Unfortunately, the
figure ends in 2015 and dataset sizes have continued to grow since then. For example, GPT-3
(released in 2020) was trained on a dataset with approximately 300 billion tokens (words or
word pieces) (Brown et al. 2020). Even more recent models will have been trained on even
larger datasets. Furthermore, as discussed in the section on big data, thanks to digitalization
and the rise of the internet, some companies now have access to vast amounts of data on
user behavior (e.g., Amazon has data on purchases made by its customers, Netflix has data on
what movies users watch, etc.), which can be used to train machine learning models.

The need for large data sets still limits the applicability to certain fields. For example, in
macroeconomic forecasting, we usually only have quarterly data for 40-50 years. Conventional
time series methods (e.g., ARIMA) often still tend to perform better than ML methods (e.g.,
neural networks). However, in this particular case, with the advent of pretrained time series
models, e.g., Chronos, this might change in the (near) future.

On the algorithmic side, there have been many improvements in optimization algorithm
and model architectures (e.g., development of transformers) that have allowed for more
efficient training of machine learning models. These improvements have also contributed to the
recent advances in AI. Furthermore, a strong community effort has gone into open-sourcing
machine learning frameworks (e.g., PyTorch) and pre-trained models (e.g., BERT, GPT) which
has lowered the barrier to entry for many practitioners.
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Figure 1.3: Data set sizes over time (Source: Goodfellow, Bengio, and Courville (2016))

1.6 Types of Learning

Machine learning methods are commonly distinguished based on the tasks that we
would like to perform, and the data that we have access to for learning how to perform
said task. ML methods are commonly categorized into

• Supervised Learning: Learn function 𝑦 = 𝑓(𝑥) from data that you observe for 𝑥 and 𝑦
• Unsupervised Learning: “Make sense” of observed data 𝑥
• Reinforcement Learning: Learn how to interact with the environment

Key for the distinction between supervised and unsupervised learning is whether we have access
to labeled data (i.e., data where we observe both input features 𝑥 and output labels 𝑦) or
not, as the following example illustrates.

INFO Example: Fraud Detection

Suppose you work in a bank’s fraud detection department and want to identify fraudulent
credit card transactions. The approach you take depends on what data you have available:

• Supervised Learning: If you have historical transaction data where each trans-
action is labeled as “fraudulent” or “legitimate” (e.g., from past investigations or
customer reports), you can train a model to learn the patterns that distinguish
fraud from normal transactions. The model learns a function that maps transaction
features (amount, location, time, merchant type, etc.) to a fraud prediction. Once
trained, the model can classify new, unseen transactions.

• Unsupervised Learning: If you don’t have labels, perhaps because fraud is rare
and hard to identify, or you’re looking for new types of fraud that haven’t been seen
before, you can use unsupervised learning to find unusual patterns. For example, a
clustering algorithm might group transactions by similarity and flag transactions
that don’t fit well into any cluster as potential anomalies worth investigating.
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Fire Types of Learning in Practice

Machine learning models might combine different types of learning. In the context
of the previous example of fraud detection, one might use unsupervised methods to detect
anomalies and flag suspicious transactions, followed by human review that generates
labels, which then feed into supervised models for more accurate classification.
A related approach is semi-supervised learning, which uses a small amount of labeled
data together with a large amount of unlabeled data. This is particularly useful when
labeling is expensive or time-consuming—for example, having experts manually classify
thousands of regulatory documents. The model learns patterns from the abundant
unlabeled data while using the limited labels to guide its understanding.
Another example of combining different learning methods is provided by large language
models (LLMs) such as ChatGPT. LLMs are typically trained using a combination
of self-supervised learning (a form of unsupervised learning), supervised learning, and
reinforcement learning.

The focus of this course will be on supervised learning. Nevertheless, let’s have a closer look at
the three types of learning.

1.6.1 Supervised Learning

Figure 1.4: Supervised Learning

Supervised learning is probably the most common form of machine learning. In supervised
learning, we have a training dataset consisting of input-output pairs (𝑥𝑛, 𝑦𝑛) for 𝑛 = 1, … , 𝑁.
The goal is to learn a function 𝑓 that maps inputs 𝑥 to outputs 𝑦.

The type of function 𝑓 might be incredibly complex, e.g.

• From images of cats and dogs 𝑥 to a classification of the image 𝑦 (→ Figure 1.5)
• From text input 𝑥 to some coherent text response 𝑦 (→ ChatGPT)

27



• From text input 𝑥 to a generated image 𝑦 (→ Midjourney)
• From bank loan application form 𝑥 to a loan decision 𝑦

Regarding terminology, note that sometimes

• Inputs 𝑥 are called features, predictors, or covariates,
• Outputs 𝑦 are called labels, targets, or responses.

Based on the type of output, we can distinguish between

• Classification: Output 𝑦 is in a set of mutually exclusive labels (i.e., classes), i.e. 𝒴 =
{1, 2, 3, … , 𝐶}

• Regression: Output 𝑦 is a real-valued quantity, i.e. 𝑦 ∈ ℝ

Let’s have a closer look at some examples of classification and regression tasks.

Classification

Training Data

...

Image Label

Dog

Cat

Algorithm after Training

New Image Prediction

Cat (2%)

Dog (98%)

Cat (17%)

Dog (83%)

Figure 1.5: Training a machine learning algorithm to classify images of cats and dogs

Figure 1.5 shows an example of a binary classification task. The algorithm is trained on a
dataset of images of cats and dogs. The goal is to predict the label (i.e., “cat” or “dog”) of
a new image (new in the sense that the images were not part of the training dataset). After
training, the algorithm can predict the label of new images with a certain degree of accuracy.
However, if you give the algorithm an image of, e.g., a horse it might mistakenly predict that it
is a dog because the algorithm has never seen an image like that before and because it has been
trained only for binary classification (it only knows two kinds of classes, “cats” and “dogs”). In
this example, 𝑥 would be an image in the training dataset and 𝑦 would be the label of that
image.

Extending the training dataset to also include images of horses with a corresponding label
would turn the tasks into multiclass classification.

28



Regression
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Figure 1.6: Linear and Polynomial Regression

In regression tasks, the variable that we want to predict is continuous. Linear and polynomial
regression in Figure 1.6 are a form of supervised learning. Thus, you are already familiar with
some basic ML techniques from the statistics and econometrics courses.

Another common way to solve regression tasks is to use neural networks, which can learn
highly non-linear relationships. In contrast to, for example, polynomial regression, neural
networks can learn these relationships without the need to specify the functional form
(i.e., whether it is quadratic as in Figure 1.6) of the relationship. This makes them very flexible
and powerful tools. We will have a look at neural networks later on.

1.6.2 Unsupervised Learning

Figure 1.7: Unsupervised Learning
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An issue with supervised learning is that we need labeled data which is often not available.
Unsupervised learning is used to explore data and to find patterns that are not
immediately obvious. For example, unsupervised learning could be used to find groups of
customers with similar purchasing behavior in a dataset of customer transactions. Therefore,
the task is to learn some structure in the data 𝑥. Note that we only have features in the dataset
and no labels, i.e., the training dataset consists of 𝑁 data points 𝑥𝑛.

Unsupervised learning tasks could be, for example,

• Finding clusters in the data, i.e. finding data points that are “similar” (→ clustering)
• Finding latent factors that capture the “essence” of the data (→ dimensionality reduc-

tion)

Let’s have a look at some examples of clustering and dimensionality reduction.

Clustering
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Figure 1.8: Clusters in data on iris flowers (left-hand side: true classes, right-hand side: k-means
clusters)

Clustering is a form of unsupervised learning where the goal is to group data points into
so-called clusters based on their similarity. We want to find clusters in the data such that
observations within a cluster are more similar to each other than to observations in other
clusters.

Figure 1.8 shows an example of a clustering task. The dataset consists of measurements
of sepal (and petal) length and width of three species of iris flowers. The goal is to find
clusters based on just the similarity in sepal and petal lengths and widths without relying
on information about the actual iris flower species. The left-hand panel of Figure 1.8, shows
the actual classification of the iris flowers. The right-hand side shows the result of a k-means
clustering algorithm that groups the data points into three clusters.
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Figure 1.9: Petal vs Sepal (Source: Wikimedia)
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Dimensionality Reduction

Suppose you observe data on house prices and many variables describing each house. You
might observe, e.g., property size, number of rooms, room sizes, proximity to the closest
supermarket, and hundreds of variables more. A ML algorithm (e.g., principal component
analysis or autoencoders) could find the unobserved factors that determine house prices.
These factors sometimes (but not always) have an interpretation. For example, a factor driving
house prices could be amenities. This factor could summarize variables such as proximity
to the closest supermarket, number of nearby restaurants, etc. Ultimately, hundreds of
explanatory variables in the data set might be represented by a small number of
factors.

1.6.3 Reinforcement Learning

Figure 1.10: Reinforcement Learning

In reinforcement learning, an agent learns how to interact with its environment. The agent
receives feedback in the form of rewards or penalties for its actions. The goal is to learn a
policy that maximizes the total reward.

For example, a machine could learn to play chess using reinforcement learning

• Input 𝑥 would be the current position (i.e., the position of pieces on the board)
• Action 𝑎 would be the next move to make given the position
• One also needs to define a reward (e.g., winning the game at the end)
• Goal is then to find 𝑎 = 𝜋(𝑥) to maximize the reward

This is also the principle behind AlphaZero that learned how to play Go and chess.

Another example is MarI/O which learned how to play Super Mario World. The algorithm
learns to play the game by receiving feedback in the form of rewards (e.g., points for collecting
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coins, penalties for dying) and then improves in playing the game by “an advanced form of
trial and error”.

Figure 1.11: MarI/O playing Super Mario World (Source: YouTube)

In this course, we will focus on supervised learning. However, we will look at some unsupervised
learning techniques if time allows. Reinforcement learning is going beyond the scope of this
course and will not be covered.

INFO Mini-Exercise

Are the following tasks examples of supervised, unsupervised, or reinforcement learning?

1. Predicting the price of a house based on its size and location (given a dataset of
house prices and features).

2. Finding groups of customers with similar purchasing behavior (given a dataset of
customer transactions and customer characteristics).

3. Detecting fraudulent credit card transactions (given a dataset of unlabeled credit
card transactions).

4. Detecting fraudulent credit card transactions (given a dataset of labeled credit card
transactions).

5. Recognizing handwritten digits in the MNIST dataset (see next section).
6. Grouping news articles by topic based only on their content (without knowing the

topics in advance).
7. Predicting whether a customer will cancel their subscription next month, given
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historical data on customer behavior and cancellations.
8. Classifying emails as spam or not spam, using a dataset where each email is labeled

as spam or not.
9. Training a robot to navigate a maze by receiving rewards for reaching the exit and

penalties for hitting walls.
10. Identifying unusual trading patterns in financial markets to flag potential market

manipulation (given a dataset of trades with no labels indicating manipulation).
11. Automatically categorizing incoming regulatory documents by topic (given a corpus

of documents that have already been manually categorized).
12. Training an agent to set interest rates in a simulated economy, receiving rewards

based on how well it stabilizes inflation and output over time.
13. Extracting the sentiment (hawkish vs. dovish) from central bank press releases

(given a dataset of statements labeled by economists as hawkish or dovish).
14. Reducing hundreds of macroeconomic indicators to a smaller set of latent factors

that capture the state of the economy.
15. Improving a chatbot’s responses by having users rate each reply as helpful or

unhelpful after their conversation.

LIGHTBULB Solution

1. Supervised learning (regression): We have labeled data (house prices) and
want to predict a continuous value.

2. Unsupervised learning (clustering): No labels; we’re finding structure in the
data based on similarity.

3. Unsupervised learning (anomaly detection): Without labels, we can only
identify unusual patterns that deviate from normal behavior.

4. Supervised learning (classification): With fraud/legitimate labels, we can train
a classifier.

5. Supervised learning (classification): MNIST includes digit labels (0–9) for each
image.

6. Unsupervised learning (clustering/topic modeling): No predefined topics;
we discover them from the data.

7. Supervised learning (classification): Historical cancellation data provides labels
(churned/retained).

8. Supervised learning (classification): Each email is labeled as spam or not spam.
9. Reinforcement learning: The robot learns from rewards and penalties through

interaction with its environment.
10. Unsupervised learning (anomaly detection): No labels; we identify outliers

that deviate from normal trading patterns.
11. Supervised learning (classification): We have labeled categories and want to

assign new documents to them.
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12. Reinforcement learning: The agent learns a policy through sequential interaction
with the simulated economy, receiving rewards based on outcomes.

13. Supervised learning (classification): Labeled sentiment data allows us to train
a classifier.

14. Unsupervised learning (dimensionality reduction): No labels; we’re finding
latent structure (e.g., via PCA or factor models).

15. Reinforcement learning (RLHF): The chatbot learns to generate better re-
sponses based on human feedback signals. This approach, known as Reinforcement
Learning from Human Feedback (RLHF), is how models like ChatGPT are fine-tuned
after initial training.

1.7 Popular Practice Datasets

There are many publicly available datasets that you can use to learn how to implement machine
learning methods. Here are some well-known platforms with a large collection of datasets

• Kaggle,
• HuggingFace, and
• OpenML.

Another good source for practice datasets is the collection of datasets provided by scikit-learn.
These datasets can be easily loaded into Python from the scikit-learn package. Furthermore,
Murphy (2022) provides an overview of some well-known datasets that are often used in machine
learning. For example, MNIST is a dataset of handwritten digits (see Figure 1.12) that is often
used to test machine learning algorithms. The dataset consists of 60,000 training images and
10,000 test images. Each image is a 28x28 pixel image of a handwritten digit. The goal is to
predict the digit in the image.
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Figure 1.12: MNIST (Source: Wikimedia)
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Chapter 2

Programming in Python

This section provides a brief introduction to programming in Python, covering the basics of
the language, essential libraries for data analysis, and best practices for coding. The goal is to
equip you with the skills needed to work with Python effectively in the context of artificial
intelligence and big data.

Python has become the de facto standard for AI and data science due to its simplicity, readability,
and rich ecosystem of specialized libraries. Throughout the course, we will use Python for
various tasks, including data manipulation, visualization, statistical analysis, and implementing
machine learning algorithms. By the end of this section, you should be comfortable with
Python’s core concepts and ready to tackle basic real-world AI challenges.

Note that programming is a skill that cannot be mastered overnight. It requires practice and
continuous learning. I encourage you to experiment with the code examples provided in this
section and to work through the exercises. Don’t worry if things don’t click immediately;
programming fluency develops through repetition and problem-solving.

INFO Note

The material in this section draws from the material developed by Alba Miñano-Mañero
and extended by Jesús Villota Miranda, which they kindly prepared for another data
science course that I taught at CEMFI.

2.1 Overview of Python

2.1.1 What is Python?

Python is a high-level, interpreted programming language created by Guido van Rossum and
first released in 1991. It emphasizes code readability and simplicity through its clean syntax and
use of significant whitespace, making it an ideal language for both beginners and experienced
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programmers. Python is a general-purpose language that excels across diverse domains—from
automation to scientific computing and artificial intelligence. Its extensive standard library
and vast ecosystem of third-party packages enable rapid development and prototyping. Today,
Python is one of the most popular programming languages worldwide and has become the
lingua franca of data science and machine learning, largely due to powerful libraries like NumPy,
Pandas, scikit-learn, TensorFlow, and PyTorch.

2.1.2 Why Python and Not Other Languages?

While languages like R, Julia, and MATLAB, or sometimes even lower-level languages like
C++ are used in data science and AI, Python offers distinct advantages for this course:

• Unified ecosystem: Python handles the entire data science workflow—from data
collection and cleaning to modeling and deployment—within a single language, avoiding
the friction of switching between tools.

• Industry adoption: Major tech companies and research institutions have standardized
on Python for AI/ML work, making it a very marketable skill for practitioners.

• Library maturity: The ecosystem offers battle-tested libraries (NumPy, Pandas, scikit-
learn) alongside cutting-edge deep learning frameworks (PyTorch, TensorFlow), providing
both stability and innovation.

• Gentle learning curve: Readable syntax allows you to focus on concepts rather than
wrestling with language complexity—particularly valuable when learning AI and big data
techniques.

• Community support: With the largest community in data science, you’ll find abundant
tutorials, Stack Overflow answers, and open-source projects to learn from.

That said, other languages have their strengths: R, for example, excels in statistical analysis
and visualization and Julia offers superior performance for numerical computing. Python
strikes the best balance for our purposes: accessible enough for newcomers yet powerful
enough for production systems.

2.1.3 Installation and Setup

For this course, we will primarily use Nuvolos, a cloud-based platform that provides a pre-
configured Python environment with all necessary libraries and a VS Code interface. This
eliminates installation headaches and ensures everyone has an identical setup. You can access
Nuvolos through the link in the sidebar.

However, learning to set up Python locally is a valuable skill for future projects. If you wish
to work on your own machine, here are the general steps to install Python and the required
packages:
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1. Install Python via Anaconda/Miniconda: Anaconda is a distribution that bundles
Python with common data science packages. Miniconda is a lighter version that installs
only Python and the conda package manager, allowing you to install packages as needed.

2. Create a virtual environment: Virtual environments isolate project dependencies,
preventing version conflicts between projects. Use conda env create -f https://ai-
bigdata.joelmarbet.com/environment.yml to create the environment required for this
course.

3. Install additional packages: If required, you can install additional packages individually
(e.g., conda install numpy).

4. Set up VSCode: Install Visual Studio Code and add the Python and Jupyter extensions.
VSCode provides an excellent development experience with features like code completion,
debugging, and integrated notebook support.

Detailed installation instructions on how to install the environment used in this course are
available in the “Notes for Local Installation” PDF linked in the sidebar. For troubleshooting
or platform-specific issues, consult the documentation or reach out after class or by email.

2.2 Development Environment

A good development environment significantly improves your productivity and learning experi-
ence. This section covers the main tools you’ll encounter in this course.

2.2.1 Visual Studio Code (VSCode)

VSCode is a free, lightweight, yet powerful code editor that has become a developer favorite
for many different programming languages. It combines the simplicity of a text editor with
features traditionally found in full IDEs.

Figure 2.1 shows the main components of the VSCode interface:

1. Activity Bar: Located on the far left, it provides quick access to different views like
Explorer, Search, Source Control, Extensions, and more.

2. Side Bar: Displays different views depending on the selected activity (e.g., file explorer,
search results).

3. Editor Area: The central area where you write and edit your code files.
4. Panel: The bottom area that can display output, terminal, problems, and debug

information.
5. Status Bar: Located at the bottom, it shows information about the current file, such as

line number, encoding, and selected Python interpreter.
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Figure 2.1: VSCode - Overview
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Note that not all elements are always visible; for example, the Panel is hidden by default and
can be toggled as needed.

For Python development, you’ll want to install the following extensions in VSCode:

• Python Extension: Provides IntelliSense (code completion), linting, debugging, and
code navigation. It automatically detects your Python installations and allows you to
select interpreters.

• Jupyter Extension: Enables you to create, edit, and run Jupyter notebooks directly
within VSCode, eliminating the need to switch to a browser.

You can install extensions by clicking on the Extensions icon in the left sidebar and searching
for them by name.

2.2.1.1 Install Python Extension

Figure 2.2: VSCode - Install Python Extension
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2.2.1.2 Install Jupyter Extension

Figure 2.3: VSCode - Install Jupyter Extension

We will primarily use VSCode within Nuvolos for this course, but you can also set it up locally
following the installation instructions provided earlier. Note that the version on Nuvolos has an
additional menu button at the top left, which provides access to menus to open files, settings,
and other options. In the local version of VSCode, these options are available in the standard
menu bar at the top of the window/screen.

2.2.2 Jupyter Notebooks

The main way we will interact with Python code in this course is through Jupyter Notebooks.
Jupyter Notebooks, as well as the popular Jupyter Lab, are all part of the Jupyter Project
which revolves around the provision of tools and standards for interactive computing across
different computing languages (Julia, Python, R).

Jupyter Notebooks are interactive documents that combine live code, visualizations, and
explanatory text. They’re ideal for exploratory data analysis and prototyping. They allow you
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to write and execute code in small chunks (cells), see immediate outputs, and document your
thought process alongside the code. While Jupyter Notebooks are excellent for exploration and
learning, they may not be the best choice for production code or large projects due to challenges
with version control and code organization. However, they remain a popular tool in data
science and AI for their interactivity and ease of use. We will execute Jupyter Notebooks within
VSCode instead of the more traditional browser-based interface. The reason for this choice is
to provide a unified development environment where you can seamlessly switch between writing
notebooks and scripts, debugging code, and managing files. Furthermore, VSCode integrates
well with recent AI-assisted coding tools, which can enhance your productivity.

Figure 2.4 shows an example of a Jupyter notebook opened in VSCode. To work with Jupyter
notebooks in VSCode, follow these steps:

1. Open Notebook: Open a notebook file (file extension: .ipynb) or create a new one
from the menu (“File” -> “New File” and then select “Jupyter Notebook”).

2. Choose Kernel: Ensure that the kernel (Python interpreter) is set correctly. In this
course, you should always select ai-big-data-cemfi as the kernel. You can change the
kernel by clicking on the current kernel name (or “Select Kernel”) in the top-right corner
of the notebook interface (denoted by number 1 in Figure 2.4). Then, click on “Python
Environments” and select ai-big-data-cemfi from the list.

If you have done this correctly, you should see ai-big-data-cemfi displayed as the selected
kernel as shown in Figure 2.4.

Figure 2.4: VSCode - Jupyter Initial Setup
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A Jupyter notebook consists of a sequence of cells, which can be of two main types:

• Code Cells: These cells contain executable code. You can run them individually, and
the output (results, plots, error messages) will be displayed directly below the cell.

• Markdown Cells: These cells allow you to write formatted text using Markdown syntax.
You can include headings, lists, links, images, and even LaTeX equations for mathematical
notation.

These cells can be created from the toolbar at the top of the notebook interface (denoted by
number 2 in Figure 2.4) or from the + button appearing under cells when hovering over them.
From the toolbar you can also run cells, stop execution, restart the kernel, and perform other
notebook-related actions. Cells can also be executed by selecting them and pressing Shift-
Enter or by clicking the “Play” button in the toolbar (denoted by number 4 in Figure 2.5). Once
you run a cell, the output will appear directly below it (denoted by number 5 in Figure 2.5).
Markdown cells can be edited by double-clicking on them, and you can switch between code and
markdown cell types using the dropdown menu in the toolbar. Number 2 and 3 in Figure 2.5
show markdown cells that are being edited and rendered, respectively. Number 1 in Figure 2.5
shows a code cell. Note that code cells have “Python” written in the bottom right corner to
indicate the language being used.

Figure 2.5: VSCode - Jupyter Cells
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2.2.3 Notebooks vs. Scripts

Another way to write and run Python code is through scripts. Scripts are plain text files
with a .py extension that contain Python code. They are executed as a whole, either from
the command line or within an IDE like VSCode. They are better suited for larger projects,
production code, and automation tasks.

Figure 2.6: VSCode - Python Script

Figure 2.6 shows an example of a Python script opened in VSCode. You can run the entire
script by right-clicking anywhere in the editor and selecting “Run Python File in Terminal” or
by clicking the “Play” button (denoted by number 1 in Figure 2.6). The output will appear in
the integrated terminal at the bottom of the VSCode window.

When to use notebooks:

• Exploratory data analysis and visualization
• Step-by-step tutorials and documentation
• Quick prototyping and experimentation
• Presenting results with integrated plots and explanations

When to use scripts:

• Production code and automation
• Code that will be imported as modules
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• Version control such as Git (notebooks can be harder to diff)
• Long-running processes without intermediate outputs

Best Practices:

• Keep notebooks focused on a single topic or analysis
• Use descriptive cell outputs and markdown for documentation
• Restart kernel and run all cells before sharing to ensure reproducibility

We will primarily use Jupyter notebooks for in-class exercises and exploratory tasks, but I
will provide some Python scripts as examples. Understanding both formats is important for
effective Python programming.

2.2.4 Google Colab

Google Colab is a free cloud-based Jupyter notebook environment that requires no setup and
provides free access to GPUs. It’s particularly useful for:

• Working on machines without Python installed
• Experimenting with deep learning models that require GPUs
• Collaborating with others in real-time (similar to Google Docs)
• Accessing more computational resources than your local machine provides

Limitations:

• Sessions timeout after periods of inactivity
• Files are stored in Google Drive or must be re-uploaded each session
• Not suitable for long-running jobs or production workflows
• Might not work in certain restricted corporate environments

If you have trouble installing the environments locally, Google Colab can be a good alternative.
To use Colab, simply navigate to colab.research.google.com. There you can create a new
notebook or upload an existing one. I will provide links to the notebooks used in this course
that you can open directly in Colab if needed. However, Nuvolos is the preferred environment
for this course and will give you the best experience.

2.3 Python Fundamentals

Python is an interpreted language. By this we mean that the Python interpreter will run
a program by executing the source code line-by-line without the need for compilation into
machine code beforehand. Furthermore, Python is an Object-Oriented Programming
(OOP) language. Everything we define in our code exists within the interpreter as a Python
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object, meaning it has associated attributes (data) and methods (functions that operate on
that data). We will see these concepts in more detail later.

First, let’s have a look at the basics of any programming language. All programs consist of the
following

• Variables,
• Functions,
• Loops, and
• Conditionals.

2.3.1 Variables

Variables are basic elements of any programming language. They

• store information,
• can be manipulated by the program, and
• can be of different types, e.g. integers, floating point numbers (floats), strings (sequences

of characters), or booleans (true or false)

2.3.1.1 Creating Variables

Python is dynamically typed, meaning you don’t need to declare variable types explicitly.
The interpreter infers the type based on the assigned value. For example, the following code
creates a variable x and assigns it the integer value 100. The type() function is then used to
check the type of the variable.

x = 100
type(x)

<class 'int'>

The Python interpreter output int, indicating that x is of type integer.

As the example above shows, you can create a variable by simply assigning a value to it using
the equals sign (=). What happens under the hood is that Python creates an object in memory
to store the value 100 and then creates a reference (the variable name x) that points to that
object. When you later use the variable x in your code, Python retrieves the value from the
memory location that x references. For example, we can then do computations with x:

y = x + 50
print(y)
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Python retrieved the value of x (which is 100), added 50 to it, and assigned the result to the
new variable y.

Note that you can reassign variables to new values or even different types. For example, you
can change the value of x simply by assigning a new value to it

x = 200
print(x)

200

Note that now x points to a new object in memory with the value 200. The previous object
with the value 100 will be automatically cleaned up by Python’s garbage collector if there are
no other references to it. This might not seem important now, but there are some implications
of this behavior when working with mutable objects, which we will cover later.

2.3.1.2 Naming Variables

The process of naming variables is an important aspect of programming. Good variable names
enhance code readability and maintainability, making it easier for others (and yourself) to
understand the purpose of each variable.

For example, consider the following two variable names

a = 25
number_of_students = 25

The first variable name, a, is vague and does not convey any information about what it
represents. In contrast, number_of_students is descriptive and clearly indicates that the
variable holds the count of students. This makes the code more understandable, especially in
larger programs where many variables are used.

Python imposes certain rules on how variable names can be constructed:

1. They must start with a letter (a-z, A-Z) or an underscore (_).
2. They can only contain letters, numbers (0-9), and underscores.
3. They cannot be the same as Python’s reserved keywords (e.g., if, else, while, for,

etc.). help(keywords) will show which words are reserved.
4. Variable names are case-sensitive, meaning that Variable, variable, and VARIABLE

would be considered different variables.

In addition to these rules, good practices for naming variables include to
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• Use meaningful and descriptive names that convey the purpose of the variable
• Use lowercase letters and separate words with underscores (snake_case) for better

readability (some programmers use camelCase, but snake_case is preferred in Python)
• Avoid using single-letter names except for loop counters or very short-lived variables
• Avoid using built-in function names because that will overwrite the function (i.e., if we

write type we will no longer be able to use type to access the type of variables)
• Be consistent with naming conventions throughout your codebase
• While you can use names in any language, English is generally preferred so that anyone

can follow the code

The following code snippet lists all reserved keywords in Python that cannot be used as variable
names

import keyword

for kw in keyword.kwlist:
print(kw)

False
None
True
and
as
assert
async
await
break
class
continue
def
del
elif
else
except
finally
for
from
global
if
import
in
is
lambda

49



nonlocal
not
or
pass
raise
return
try
while
with
yield

Make sure you don’t use any of these words as variable names in your code.

2.3.1.3 Basic Data Types

Python has several built-in data types that are commonly used:

• Integers (int): Whole numbers, e.g., 42, -7
• Floating-point numbers (float): Numbers with decimal points, e.g., 3.14, -0.001
• Complex numbers (complex): Numbers with real and imaginary parts, e.g., 2 + 3j
• Strings (str): Sequences of characters enclosed in single or double quotes, e.g., 'Hello,

World!', "Python"
• Booleans (bool): Logical values representing True or False

Since Python is dynamically typed, the creation of variables of these types is straightforward,
as shown in the following examples:

this_is_int = 5
type(this_is_int)

<class 'int'>

this_is_float = 3.14
type(this_is_float)

<class 'float'>

this_is_complex = 2 + 3j
type(this_is_complex)

<class 'complex'>
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this_is_str = "Hello, Python!"
type(this_is_str)

<class 'str'>

this_is_bool = True
type(this_is_bool)

<class 'bool'>

Note that boolean values are special in the sense that they are equivalent to integers: True is
equivalent to 1 and False is equivalent to 0. This means you can perform arithmetic operations
with boolean values, and they will behave like integers in those contexts.

There is another data type called NoneType, which you might encounter. It represents the
absence of a value and is created using the None keyword.

this_is_none = None
type(this_is_none)

<class 'NoneType'>

You can also create more complex data types, which we will cover in the section on data
structures.

2.3.1.4 Basic Operations

A key element of programming is manipulating the variables you create. Python supports
various basic operations for different data types, including arithmetic operations for numbers,
string operations for text, and boolean operations for logical values.

Arithmetic Operations: You can perform arithmetic operations on integers and floats using
operators like +, -, *, /, // (floor division), % (modulus), and ** (exponentiation).

a = 10
b = 3

sum_result = a + b # Addition
print(sum_result)

13
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diff_result = a - b # Subtraction
print(diff_result)

7

prod_result = a * b # Multiplication
print(prod_result)

30

div_result = a / b # Division
print(div_result)

3.3333333333333335

floor_div_result = a // b # Floor Division
print(floor_div_result)

3

mod_result = a % b # Modulus
print(mod_result)

1

exp_result = a ** b # Exponentiation
print(exp_result)

1000

String Operations: Strings can be concatenated using the + operator and repeated using the
* operator.

str1 = "Hello, "
str2 = "World!"
concat_str = str1 + str2 # Concatenation
print(concat_str)

Hello, World!
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Sometimes, you may want to repeat a string multiple times

repeat_str = str1 * 3 # Repetition
print(repeat_str)

Hello, Hello, Hello,

Another useful operation is string interpolation, which allows you to embed variables within
strings. This can be done using f-strings (formatted string literals) by prefixing the string with
f and including expressions inside curly braces {}.

name = "Alba"
age = 30
intro_str = f"Her name is {name} and she is {age} years old."
print(intro_str)

Her name is Alba and she is 30 years old.

Boolean Operations: You can use logical operators like and, or, and not to combine or
negate boolean values.

bool1 = True
bool2 = False
and_result = bool1 and bool2 # Logical AND
print(and_result)

False

or_result = bool1 or bool2 # Logical OR
print(or_result)

True

not_result = not bool1 # Logical NOT
print(not_result)

False

To compare values, you can use comparison operators like == (equal to), != (not equal to), <
(less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to).
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a = 10
b = 20

eq_result = (a == b) # Equal to
print(eq_result)

False

neq_result = (a != b) # Not equal to
print(neq_result)

True

lt_result = (a < b) # Less than
print(lt_result)

True

gt_result = (a > b) # Greater than
print(gt_result)

False

le_result = (a <= b) # Less than or equal to
print(le_result)

True

ge_result = (a >= b) # Greater than or equal to
print(ge_result)

False

Note that the result of comparison operations is always a boolean value (True or False). This
will be useful when we discuss conditional statements later.

Exclamation-Triangle Warning

Be careful not to confuse the assignment operator = with the equality comparison operator
==. The single equals sign = assigns a value to a variable, while the double equals sign ==
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checks if two values are equal and returns a boolean result.

We can also combine multiple comparison operations using logical operators. For example, to
check if a number is within a certain range, we can use the and operator

num = 15
is_in_range = (num > 10) and (num < 20)
print(is_in_range)

True

This checks if num is greater than 10 and less than 20, returning True if both conditions are
met. Of course, we can also use or to check if at least one condition is met or not to negate a
condition.

2.3.2 Functions

Functions are reusable blocks of code that perform a specific task. They help organize code,
improve readability, and allow for code reuse. In Python, you define a function using the
def keyword, followed by the function name and parentheses containing any parameters. For
example, here is a simple function that takes two arguments, performs a calculation, and
returns the result

def function_name(arg1, arg2):
r3 = arg1 + arg2
return r3

Note that the indentation (whitespace at the beginning of a line) is crucial in Python, as
it defines the scope of the function. The code block inside the function must be indented
consistently. In the example above, two spaces are used for indentation, but tabs or four spaces
are also common conventions. VSCode will automatically convert tabs to spaces based on your
settings and the convention used in the file.

Suppose we want to create a function that greets a user by their name. We can define such a
function as follows

def greet(name):
greeting = f"Hello, {name}!"
return greeting

You can then call the function by passing the required argument
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message = greet("Alba")
print(message)

Hello, Alba!

We could also define the function without a return value and simply print the greeting directly

def greet_print(name):
print(f"Hello, {name}!")

You can call this function in the same way

greet_print("Alba")

Hello, Alba!

We can also define functions with multiple outputs by returning a tuple of values. For example,
here is a function that takes two numbers and returns both their sum and product

def sum_and_product(x, y):
sum_result = x + y
product_result = x * y
return sum_result, product_result

You can call this function and unpack the returned values into separate variables

s, p = sum_and_product(5, 10)
print(f"Sum: {s}, Product: {p}")

Sum: 15, Product: 50

or you can capture the returned tuple in a single variable

result = sum_and_product(5, 10)
print(f"Result: {result}")

Result: (15, 50)

You can define functions with multiple return statements to handle different conditions. For
example, here is a function that checks if a number is positive, negative, or zero and returns an
appropriate message
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def check_number(num):
if num > 0:

return "Positive"
elif num < 0:

return "Negative"
else:

return "Zero"

You can call this function with different numbers to see the results

print(check_number(10)) # Output: Positive

Positive

print(check_number(-5)) # Output: Negative

Negative

print(check_number(0)) # Output: Zero

Zero

When you pass a variable to a function, the function receives a local copy of that value.
Modifying this copy inside the function does not affect the original variable outside. However,
if you need to modify a variable defined outside the function (a global variable), you must
explicitly declare it using the global keyword. The difference between local and global variables
is also called the scope of a variable. The following example illustrates the difference

global_var = 10

def edit_input(input_var):

# Access the input variable
print("Input you gave me", input_var)

input_var = input_var + 5 # This modifies the local copy of input_var
and not global_var↪

print("Inside the function - modified input_var:", input_var)

return input_var # Return the modified value
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def edit_global(input_var):

global global_var # Make global_var accessible inside the function

# Access the input variable
print("Input you gave me", input_var)

global_var = global_var + input_var # This modifies the global variable
print("Inside the function - modified global_var:", global_var)

return None

# Call the function
edit_input(global_var)

Input you gave me 10
Inside the function - modified input_var: 15
15

print("Outside the function - global_var:", global_var)

Outside the function - global_var: 10

# Call the function
edit_global(global_var)

Input you gave me 10
Inside the function - modified global_var: 20

print("Outside the function - global_var:", global_var)

Outside the function - global_var: 20

Oftentimes it is better to avoid global variables if possible, as they can lead to code that is
harder to understand and maintain. Instead, prefer passing variables as arguments to functions
and returning results. For example, if you would like to modify the value of global_var, you
could simply assign the returned value of the function to it

global_var = edit_input(global_var)

Input you gave me 20
Inside the function - modified input_var: 25
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print("Outside the function - global_var:", global_var)

Outside the function - global_var: 25

Functions can also have default arguments, which are used if no value is provided when the
function is called. For example, here is a function that greets a user with a default name if
none is provided

def greet_with_default(name="Guest"):
print(f"Hello, {name}!")

greet_with_default()

Hello, Guest!

greet_with_default("Jesus")

Hello, Jesus!

We used the same function, once without providing an argument (so it uses the default value
“Guest”) and once with a specific name (“Jesus”).

We can also use keyword arguments to call functions. This allows us to specify the names of
the parameters when calling the function, making it clear what each argument represents. For
example

def introduce(name, age):
print(f"My name is {name} and I am {age} years old.")

introduce(name="Alba", age=30)

My name is Alba and I am 30 years old.

We can even change the order of the arguments when using keyword arguments, as shown
above. You can also mix positional and keyword arguments, but positional arguments must
come before keyword arguments.

introduce("Alba", age=30) # This works

My name is Alba and I am 30 years old.
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#introduce(age=30, "Alba") # This will raise a SyntaxError

Positional arguments must be provided in the correct order, starting from the first parameter
defined in the function. If you try to provide them in the wrong order, Python will raise a
TypeError. For example, the following code will raise an error because the first argument is
expected to be name, but we intended to provide an integer for age.

#introduce(30, name="Alba") # This will raise a TypeError

Finally, note that the function needs to be defined before it is called in the code. If you try to
call a function before its definition, Python will raise a NameError indicating that the function
is not defined.

#test_function() # This will raise a NameError

def test_function():
print("This is a test function.")

But the following will work correctly

def test_function():
print("This is a test function.")

test_function() # This will work correctly

This is a test function.

For this reason, function definitions are often placed at the beginning of a script or notebook
cell, before any calls to those functions.

2.3.3 Conditional statements

Conditional statements allow you to control the flow of your program based on certain conditions.
In Python, you can use if, elif, and else statements to execute different blocks of code
depending on whether a condition is true or false. We have already seen an example of this in
the check_number function above.

In the following example, the do_something() function will only be executed if condition
evaluates to True, while do_some_other_thing() will always be executed.
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if condition:
do_something()

do_some_other_thing()

It is important to note that Python uses indentation to define the scope of code blocks. The
code inside the if statement must be indented consistently to indicate that it belongs to that
block.

a = 10

if a > 5:
print("a is greater than 5")
print("This line is also part of the if block")

a is greater than 5
This line is also part of the if block

print("This line is outside the if block")

This line is outside the if block

You can also nest if statements within each other to create more complex conditions. For
example

a = 10

if a > 5:
if a < 15:

print("a is between 5 and 15")
else:

print("a is greater than or equal to 15")
else:
print("a is less than or equal to 5")

a is between 5 and 15

Here, we first check if a is greater than 5. If that condition is true, we then check if a is
less than 15. Depending on the outcome of these checks, different messages will be printed.
Compared to the previous example, we also used an else statement to handle the case where
a is not less than 15.
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We can also use elif (short for “else if”) to check multiple conditions in a more concise way.
For example

a = 10

if a < 5:
print("a is less than 5")

elif a < 15:
print("a is between 5 and 15")

else:
print("a is greater than or equal to 15")

a is between 5 and 15

To reach the elif block, the first if condition must evaluate to False. If it evaluates to True,
the code inside that block will be executed, and the rest of the conditions will be skipped. If
none of the conditions are met, the code inside the else block will be executed.

Note that if statements can also be written in a single line using a ternary conditional operator.
For example

a = 10
result = "a is greater than 5" if a > 5 else "a is less than or equal to 5"
print(result)

a is greater than 5

The above code assigns a different string to the variable result based on the condition a > 5.
If the condition is true, it assigns “a is greater than 5”; otherwise, it assigns “a is less than or
equal to 5”.

2.3.4 Loops

Loops allow you to execute a block of code multiple times, which is useful for iterating over
collections of data or performing repetitive tasks. In Python, there are two main types of loops:
for loops and while loops.

while loops repeatedly execute a block of code as long as a specified condition is true. For
example

62



count = 0
while count < 5:
print("Count is", count)
count += 1 # Increment count by 1

Count is 0
Count is 1
Count is 2
Count is 3
Count is 4

print("Final count is", count)

Final count is 5

In this example, the loop will continue to run as long as count is less than 5. Inside the loop,
we print the current value of count and then increment it by 1. Once count reaches 5, the
condition becomes false, and the loop exits. Note that count += 1 is a shorthand for count =
count + 1.

for loops are used to iterate over a sequence (like a list, tuple, or string) or other iterable
objects. We will see examples of such objects in the section on data structures. For the moment,
let’s look at a simple example of a for loop that iterates over a list of numbers

numbers = [1, 2, 3, 4, 5]
for num in numbers:
print("Number is", num)

Number is 1
Number is 2
Number is 3
Number is 4
Number is 5

or alternatively, we can use the range() function to generate a sequence of numbers to iterate
over

for i in range(5): # Generates numbers from 0 to 4
print("i is:", i)
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i is: 0
i is: 1
i is: 2
i is: 3
i is: 4

We can use the function range also to get a sequence of number to loop over. It follows the
syntax range(start, stop, step)

• Start

– Where the sequence starts: it includes the start value (first number will always be
start)

– Optional
– Defaults to 0 (unless otherwise specified)

• Stop:

– Where the sequence ends: it does not include the stop value (last number will always
be stop-step)

– Required field

• Step:

– Step size of the sequence, i.e., how much we increase the value at each iteration:
start + step, start + 2*step, start + 3*step, …

– Optional
– Defaults to 1 (unless otherwise specified)

for i in range(2, 10, 2): # Generates even numbers from 2 to 8
print("i is", i)

i is 2
i is 4
i is 6
i is 8

But as mentioned before, for loops can iterate over any iterable object, not just sequences of
numbers. For example, we can iterate over the characters in a string

for letter in "Cemfi":
print(letter)
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C
e
m
f
i

or over a list of strings

months_of_year = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]↪

# Loop through the months and add some summer vibes
for month in months_of_year:

if month == "June":
print(f"Get ready to enjoy the summer break, it's {month}!")

elif month == "July" or month =="August":
print(f"{month} is perfect to find reasons to escape from Madrid")

↪

else:
print(f"Winter is coming")

Winter is coming
Winter is coming
Winter is coming
Winter is coming
Winter is coming
Get ready to enjoy the summer break, it's June!
July is perfect to find reasons to escape from Madrid
August is perfect to find reasons to escape from Madrid
Winter is coming
Winter is coming
Winter is coming
Winter is coming

Where we combined loops with conditional statements to print different messages based on the
current month.

Note that you can use the break statement to exit a loop prematurely when a certain condition
is met, and the continue statement to skip the current iteration and move to the next one.

for i in range(10):
if i == 5:

break # Exit the loop when i is 5
print("i is", i)
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i is 0
i is 1
i is 2
i is 3
i is 4

for i in range(10):
if i % 2 == 0:

continue # Skip even numbers
print("i is", i)

i is 1
i is 3
i is 5
i is 7
i is 9

You can also create nested loops, where one loop is placed inside another loop. This is useful
for iterating over multi-dimensional data structures or performing more complex tasks.

for i in range(3):
for j in range(2):

print(f"i: {i}, j: {j}")

i: 0, j: 0
i: 0, j: 1
i: 1, j: 0
i: 1, j: 1
i: 2, j: 0
i: 2, j: 1

enumerate() is a built-in function that adds a counter to an iterable and returns it as an
enumerate object. This is particularly useful when you need both the index and the value of
items in a loop.

fruits = ["apple", "banana", "cherry"]
for index, fruit in enumerate(fruits):

print(f"Index: {index}, Fruit: {fruit}")

Index: 0, Fruit: apple
Index: 1, Fruit: banana
Index: 2, Fruit: cherry
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2.3.5 Exercises

Now that we have covered the basics of Python programming, it’s time to practice what we’ve
learned. Here are some exercises to help you reinforce your understanding of variables, data
types, functions, conditionals, and loops.

1. Create two variables, a and b, and assign them the values 10 and 20, respectively. Write
a function that takes these two variables as input and returns their product and their
difference.

2. Write a function called is_even that takes a number as input and returns True if the
number is even and False otherwise. Try calling the function with different numbers to
test it.

3. Write a loop that computes the result of the sum ∑10
𝑖=1 𝑖2 and prints the result.

4. Write a loop to compute the product of all odd numbers between 1 and 20. Print the
final result. Hint: You could reuse the is_even function you defined earlier.

5. Compute the sum of all numbers between 1 and 1000 that are divisible by 3 or 5. Print
the final result.

2.4 Data Structures

The fundamental data types we have seen so far are useful for storing single values. However,
in practice, we often need to work with collections of data. Python provides several built-in
collection types to handle such cases. The most commonly used data structures in Python
are

• Lists: Ordered, mutable collections of items
• Tuples: Ordered, immutable collections of items
• Dictionaries: Ordered (Unordered prior to Python 3.7), mutable collections of key-value

pairs
• Sets: Unordered collections of unique items
• Ranges: Immutable sequences of numbers, often used for iteration

We will explore each of these types in more detail below.

2.4.1 Lists

We have already seen lists in some of the previous examples. A list is an ordered collection of
items that can be of different types. Lists are mutable, meaning you can change their contents
after creation. You can create a list by enclosing items in square brackets [], separated by
commas.
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my_list = [1, 2.5, "Hello", True]
print(my_list)

[1, 2.5, 'Hello', True]

We can access individual elements in a list using their index, which starts at 0 for the first
element. For example

first_element = my_list[0]
print("First element:", first_element)

First element: 1

You can also access elements from the end of the list using negative indices, where -1 refers to
the last element, -2 to the second last, and so on.

last_element = my_list[-1]
print("Last element:", last_element)

Last element: True

Multiple elements can be accessed using slicing, which allows you to specify a range of indices.
The syntax for slicing is list[start:stop], where start is the index of the first element to
include, and stop is the index of the first element to exclude.

sub_list = my_list[1:3] # Elements at index 1 and 2
print("Sub-list:", sub_list)

Sub-list: [2.5, 'Hello']

Since lists are mutable, you can modify their contents. For example, you can change the value
of an element at a specific index.

my_list[2] = "World"
print("After modification:", my_list)

After modification: [1, 2.5, 'World', True]

To add elements to a list, we can use the append() method to add an item to the end of the
list or the insert() method to add an item at a specific index, or extend() to add multiple
items at once.
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my_list.append("New Item")
print("After appending:", my_list)

After appending: [1, 2.5, 'World', True, 'New Item']

my_list.insert(1, "Inserted Item")
print("After inserting:", my_list)

After inserting: [1, 'Inserted Item', 2.5, 'World', True, 'New Item']

my_list.extend([3, 4, 5])
print("After extending:", my_list)

After extending: [1, 'Inserted Item', 2.5, 'World', True, 'New Item', 3, 4,
5]

Note how these methods modify the original list in place and return None, so you should not
write my_list = my_list.append(...).

There are also options to remove items from a list. You can use the remove() method to
remove the first occurrence of a specific value, the pop() method to remove an item at a specific
index (or the last item if no index is provided), or the clear() method to remove all items
from the list.

my_list.remove("World")
print("After removing 'World':", my_list)

After removing 'World': [1, 'Inserted Item', 2.5, True, 'New Item', 3, 4, 5]

popped_item = my_list.pop(2) # Remove item at index 2
print("After popping index 2:", my_list)

After popping index 2: [1, 'Inserted Item', True, 'New Item', 3, 4, 5]

print("Popped item:", popped_item)

Popped item: 2.5

my_list.clear()
print("After clearing:", my_list)
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After clearing: []

There is a convenient way to create lists using list comprehensions. List comprehensions
provide a concise way to create lists based on existing iterables. The syntax is [expression
for item in iterable if condition], where expression is the value to be added to the
list, item is the variable representing each element in the iterable, and condition is an optional
filter. For example, here is how to create a list of squares of even numbers from 0 to 9.

squares_of_even = [x**2 for x in range(10) if x % 2 == 0]
print("Squares of even numbers:", squares_of_even)

Squares of even numbers: [0, 4, 16, 36, 64]

Let’s break down the list comprehension above:

• x**2: This is the expression that defines what each element in the new list will be. In
this case, it’s the square of x.

• for x in range(10): This part iterates over the numbers from 0 to 9.
• if x % 2 == 0: This is a condition that filters the numbers, including only even numbers

in the new list. It uses the modulus operator % to check if x is divisible by 2. If a number
is divisible by 2, the remainder is 0, indicating that it is even.

2.4.2 Tuples

Tuples are similar to lists in that they are ordered collections of items. However, tuples are
immutable, meaning that once they are created, their contents cannot be changed. You can
create a tuple by enclosing items in parentheses (), separated by commas.

my_tuple = (1, 2.5, "Hello", True)
print(my_tuple)

(1, 2.5, 'Hello', True)

You can access elements in a tuple using indexing and slicing, just like with lists.

first_element = my_tuple[0]
print("First element:", first_element)

First element: 1

second_element = my_tuple[1]
print("Second element:", second_element)
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Second element: 2.5

last_element = my_tuple[-1]
print("Last element:", last_element)

Last element: True

sub_tuple = my_tuple[1:3] # Elements at index 1 and 2
print("Sub-tuple:", sub_tuple)

Sub-tuple: (2.5, 'Hello')

Note that we have seen tuples before when we defined functions that return multiple values. In
such cases, Python automatically packs the returned values into a tuple, which can then be
unpacked into separate variables.

def get_coordinates():
x = 10
y = 20
return x, y # Returns a tuple (10, 20)

x_coord, y_coord = get_coordinates() # Unpacks the tuple into separate
variables↪

print("X coordinate:", x_coord)

X coordinate: 10

print("Y coordinate:", y_coord)

Y coordinate: 20

Note that tuples are faster than lists for certain operations due to their immutability, making
them a good choice for storing data that should not change. If you need to be able to modify
the contents, use a list instead. For example, the following code will raise an error because we
are trying to change an element of a tuple

#my_tuple[1] = 3.0 # This will raise a TypeError

While tuples are immutable, you can concatenate two tuples to create a new tuple
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tuple1 = (1, 2, 3)
tuple2 = (4, 5, 6)
combined_tuple = tuple1 + tuple2
print("Combined tuple:", combined_tuple)

Combined tuple: (1, 2, 3, 4, 5, 6)

or you can repeat a tuple multiple times

repeated_tuple = tuple1 * 3
print("Repeated tuple:", repeated_tuple)

Repeated tuple: (1, 2, 3, 1, 2, 3, 1, 2, 3)

Unpacking can also be used with tuples. For example, you can unpack the elements of a tuple
into separate variables

my_tuple = (10, 20, 30)
a, b, c = my_tuple
print("a:", a)

a: 10

print("b:", b)

b: 20

print("c:", c)

c: 30

If you don’t want to unpack all elements, you can use the asterisk (*) operator to capture the
remaining elements in a list

my_tuple = (10, 20, 30, 40, 50)
a, b, *rest = my_tuple
print("a:", a)

a: 10
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print("b:", b)

b: 20

print("rest:", rest)

rest: [30, 40, 50]

It is also common to use _ (underscore) as a variable name for values that you want to ignore
during unpacking

my_tuple = (10, 20, 30)
a, _, c = my_tuple # Ignore the second element
print("a:", a)

a: 10

print("c:", c)

c: 30

2.4.3 Dictionaries

Dictionaries are ordered (unordered prior to Python 3.7) collections of key-value pairs. Each
key is unique and is used to access its corresponding value. Dictionaries are mutable, meaning
you can change their contents after creation. The keys in a dictionary must be unique and
immutable (e.g., strings, numbers, or tuples), while the values can be of any data type and
can be duplicated. You can create a dictionary by enclosing key-value pairs in curly braces {},
with each key and value separated by a colon : and pairs separated by commas.

my_dict = {"name": "Alba", "age": 30, "is_student": False}
print(my_dict)

{'name': 'Alba', 'age': 30, 'is_student': False}

You can access values in a dictionary using their keys. For example

name = my_dict["name"]
print("Name:", name)
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Name: Alba

You can also add new key-value pairs or update existing ones

my_dict["city"] = "Madrid" # Add a new key-value pair
print("After adding city:", my_dict)

After adding city: {'name': 'Alba', 'age': 30, 'is_student': False, 'city':
'Madrid'}

Alternatively, you can use the update() method to add or update multiple key-value pairs at
once

my_dict.update({"age": 31, "country": "Spain"})
print("After updating age and adding country:", my_dict)

After updating age and adding country: {'name': 'Alba', 'age': 31,
'is_student': False, 'city': 'Madrid', 'country': 'Spain'}

Note that if you use a key that already exists in the dictionary, the corresponding value will be
updated. This applies whether you use the assignment syntax or the update() method.

The keys and values can be accessed using the keys() and values() methods, respectively.
You can also use the items() method to get key-value pairs as tuples.

keys = my_dict.keys()
print("Keys:", keys)

Keys: dict_keys(['name', 'age', 'is_student', 'city', 'country'])

values = my_dict.values()
print("Values:", values)

Values: dict_values(['Alba', 31, False, 'Madrid', 'Spain'])

items = my_dict.items()
print("Items:", items)

Items: dict_items([('name', 'Alba'), ('age', 31), ('is_student', False),
('city', 'Madrid'), ('country', 'Spain')])
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The latter is particularly useful for iterating over both keys and values in a loop.

We can remove key-value pairs from a dictionary using the del statement or the pop()
method.

del my_dict["is_student"]
print("After deleting is_student:", my_dict)

After deleting is_student: {'name': 'Alba', 'age': 31, 'city': 'Madrid',
'country': 'Spain'}

age = my_dict.pop("age")
print("After popping age:", my_dict)

After popping age: {'name': 'Alba', 'city': 'Madrid', 'country': 'Spain'}

print("Popped age:", age)

Popped age: 31

2.4.4 Sets

Sets are unordered collections of unique items. They are mutable, meaning you can change
their contents after creation. Sets are useful for storing items when the order does not matter
and duplicates are not allowed. You can create a set by enclosing items in curly braces {},
separated by commas.

my_set = {1, 2, 3, 4, 5}
print("Set:", my_set)

Set: {1, 2, 3, 4, 5}

You can also create a set from an iterable, such as a list, using the set() constructor.

my_list = [1, 2, 2, 3, 4, 4, 5]
my_set_from_list = set(my_list)
print("Set from list:", my_set_from_list)

Set from list: {1, 2, 3, 4, 5}
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You can add items to a set using the add() method and remove items using the remove() or
discard() methods.

my_set.add(6)
print("After adding 6:", my_set)

After adding 6: {1, 2, 3, 4, 5, 6}

my_set.remove(3)
print("After removing 3:", my_set)

After removing 3: {1, 2, 4, 5, 6}

my_set.discard(10) # Does not raise an error if 10 is not in the set
print("After discarding 10:", my_set)

After discarding 10: {1, 2, 4, 5, 6}

There is also a frozenset type, which is an immutable version of a set. Once created, the
contents of a frozenset cannot be changed. You can create a frozenset using the frozenset()
constructor.

my_frozenset = frozenset([1, 2, 3, 4, 5])
print("Frozenset:", my_frozenset)

Frozenset: frozenset({1, 2, 3, 4, 5})

Sets are particularly useful for performing mathematical set operations such as union, intersec-
tion, difference, and symmetric difference. For example

set_a = {1, 2, 3, 4}
set_b = {3, 4, 5, 6}
union_set = set_a.union(set_b)
print("Union:", union_set)

Union: {1, 2, 3, 4, 5, 6}

intersection_set = set_a.intersection(set_b)
print("Intersection:", intersection_set)

Intersection: {3, 4}
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difference_set = set_a.difference(set_b)
print("Difference (A - B):", difference_set)

Difference (A - B): {1, 2}

symmetric_difference_set = set_a.symmetric_difference(set_b)
print("Symmetric Difference:", symmetric_difference_set)

Symmetric Difference: {1, 2, 5, 6}

More compactly, you can use operators for these operations

union_set = set_a | set_b
intersection_set = set_a & set_b
difference_set = set_a - set_b
symmetric_difference_set = set_a ^ set_b

2.4.5 Ranges

Ranges are immutable sequences of numbers, commonly used for iteration in loops. You can
create a range using the range() function, which generates a sequence of numbers based on the
specified start, stop, and step values. The syntax is range(start, stop, step), where start
is the first number in the sequence (inclusive), stop is the end of the sequence (exclusive), and
step is the increment between each number.

my_range = range(0, 10, 2) # Generates numbers from 0 to 8 with a step of 2
print("Range:", list(my_range)) # Convert to list for display

Range: [0, 2, 4, 6, 8]

You can also create a range with just the stop value, in which case the sequence starts from 0
and increments by 1 by default.

my_range_default = range(5) # Generates numbers from 0 to 4
print("Range with default start and step:", list(my_range_default))

Range with default start and step: [0, 1, 2, 3, 4]

You have seen earlier how to use ranges in for loops to iterate over a sequence of numbers.
Ranges are memory efficient because they generate numbers on-the-fly and do not store the
entire sequence in memory, making them suitable for large sequences.
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2.4.6 Mutable vs. Immutable Objects

In the examples up to now you have already seen that data types can be classified as either
mutable or immutable based on whether their values can be changed after they are created.

• Mutable objects: These objects can be modified after they are created. Examples of
mutable data types in Python include lists, dictionaries, and sets. When you modify a
mutable object, you are changing the object itself, and any other references to that object
will reflect the changes.

• Immutable objects: These objects cannot be modified after they are created. Examples
of immutable data types in Python include integers, floats, strings, and tuples. When
you attempt to modify an immutable object, you are actually creating a new object with
the modified value, leaving the original object unchanged.

An important implication of mutability is what happens when you assign one variable to
another. For mutable objects, both variables will reference the same object in memory, so
changes made through one variable will affect the other. For immutable objects, each variable
will reference its own separate object.

# Mutable example with lists
list1 = [1, 2, 3]
list2 = list1 # Both variables reference the same list
list2.append(4) # Modify list2
print("list1:", list1) # list1 is also affected

list1: [1, 2, 3, 4]

print("list2:", list2)

list2: [1, 2, 3, 4]

# Immutable example with strings
str1 = "Hello"
str2 = str1 # Both variables reference the same string
str2 += ", World!" # Modify str2 (creates a new string)
print("str1:", str1) # str1 remains unchanged

str1: Hello

print("str2:", str2)
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str2: Hello, World!

The concept of mutability is important to understand when working with data structures and
functions in Python, as it can affect how data is passed and modified within your code. When
passing mutable objects to functions, changes made to the object within the function will affect
the original object outside the function.

def modify_list(input_list):
input_list.append(100) # Modifies the original list

my_list = [1, 2, 3]
modify_list(my_list)
print(my_list) # my_list is changed

[1, 2, 3, 100]

In contrast, passing immutable objects to functions will not affect the original object.

def modify_int(input_int):
input_int += 10 # Creates a new integer

my_int = 5
modify_int(my_int)
print(my_int) # my_int remains unchanged

5

Therefore, it is crucial to be aware of the mutability of the data types you are working with to
avoid unintended side effects in your code.

2.4.7 Exercises

Now that we have covered the basics of data structures in Python, it’s time to practice what
we’ve learned. Here are some exercises to help you reinforce your understanding of lists, tuples,
dictionaries, sets, and ranges.

1. Create a list of the first 10 square numbers (i.e., 1, 4, 9, …, 100) using a list comprehension.
Print the resulting list.

2. Create a tuple containing the names of the days of the week. Access and print the name
of the third day.

3. Create a dictionary that maps the names of three countries to their respective capitals.
Access and print the capital of one of the countries.
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4. Create a set containing the unique vowels in the word “programming”. Print the resulting
set.

5. Create a range of numbers from 1 to 20 with a step of 3. Use a for loop to iterate over
the range and print each number.

2.5 Object-Oriented Programming (OOP) Basics

Object-Oriented Programming (OOP) is a programming paradigm that organizes code around
“objects” - which combine data (attributes) and functions (methods) that operate on that
data. Think of objects as self-contained units that represent real-world entities or concepts. In
Python, everything is an object, including basic data types like integers and strings. Therefore,
we have been using OOP concepts all along without being explicit about it.

2.5.1 Classes and Objects

A class is like a blueprint or template for creating objects. An object is a specific instance
created from that class. For example, if “Car” is a class, then “my_toyota” and “your_honda”
would be objects (instances) of that class.

Here’s a simple example of defining a class and creating objects from it:

# Define a class
class BankAccount:

def __init__(self, owner, balance=0):
self.owner = owner
self.balance = balance

def deposit(self, amount):
self.balance += amount
print(f"Deposited ${amount}. New balance: ${self.balance}")

def withdraw(self, amount):
if amount > self.balance:

print("Insufficient funds!")
else:

self.balance -= amount
print(f"Withdrew ${amount}. New balance: ${self.balance}")

# Create objects (instances)
account1 = BankAccount("Alba", 1000)
account2 = BankAccount("Jesus", 500)
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# Use methods
account1.deposit(200)

Deposited $200. New balance: $1200

account1.withdraw(300)

Withdrew $300. New balance: $900

# Check balances (accessing attributes)
print(f"{account1.owner}'s balance: ${account1.balance}")

Alba's balance: $900

print(f"{account2.owner}'s balance: ${account2.balance}")

Jesus's balance: $500

The __init__ method is a special method called a constructor that runs automatically when
you create a new object. The self parameter refers to the instance itself and is used to access
its attributes and methods.

2.5.2 Attributes and Methods

Attributes are variables that belong to an object and store its data. Methods are functions
that belong to an object and define its behavior.

class Student:
def __init__(self, name, student_id):

self.name = name # attribute
self.student_id = student_id # attribute
self.courses = [] # attribute

def enroll(self, course): # method
self.courses.append(course)
print(f"{self.name} enrolled in {course}")

def get_courses(self): # method
return self.courses
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# Create and use a student object
student = Student("Alba", "S12345")
student.enroll("Artificial Intelligence and Big Data")

Alba enrolled in Artificial Intelligence and Big Data

student.enroll("Python Programming")

Alba enrolled in Python Programming

print(f"{student.name}'s courses: {student.get_courses()}")

Alba's courses: ['Artificial Intelligence and Big Data', 'Python
Programming']

2.5.3 Inheritance

Inheritance is a fundamental OOP concept where a new class (called a child or subclass)
can be based on an existing class (called a parent or superclass). The child class inherits
all the attributes and methods of the parent class and can add new ones or modify existing
behavior.

# Parent class
class Animal:

def __init__(self, name):
self.name = name

def speak(self):
print(f"{self.name} makes a sound")

def sleep(self):
print(f"{self.name} is sleeping... Zzz")

# Child class inherits from Animal
class Dog(Animal):

def __init__(self, name, breed):
super().__init__(name) # Call the parent's __init__
self.breed = breed # Add a new attribute

def speak(self): # Override the parent's method
print(f"{self.name} barks!")
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def fetch(self): # Add a new method
print(f"{self.name} fetches the ball")

# Create objects
generic_animal = Animal("Generic")
my_dog = Dog("Buddy", "Labrador")

# Method inheritance: Dog inherits sleep() from Animal without modification
my_dog.sleep()

Buddy is sleeping... Zzz

# Method overriding: Dog has its own version of speak()
generic_animal.speak()

Generic makes a sound

my_dog.speak()

Buddy barks!

# New method: fetch() is only available in Dog
my_dog.fetch()

Buddy fetches the ball

print(f"{my_dog.name} is a {my_dog.breed}")

Buddy is a Labrador

This example demonstrates three key aspects of inheritance:

• Method inheritance: The Dog class automatically gets the sleep() method from
Animal without any additional code. When we call my_dog.sleep(), it uses the parent’s
implementation.

• Method overriding: The Dog class defines its own speak() method, which replaces the
parent’s version. When we call my_dog.speak(), it prints “barks!” instead of “makes a
sound”.

• Method extension: The Dog class adds a new fetch() method that doesn’t exist in
Animal.
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The super() function is used to call methods from the parent class. In the example above,
super().__init__(name) calls the Animal class’s constructor to initialize the name attribute
before adding the breed attribute specific to dogs.

While we won’t create complex inheritance hierarchies in this course, understanding this concept
helps when working with libraries like scikit-learn. For example, when you use a model like
LinearRegression, it inherits from base classes that provide common methods like fit(),
predict(), and score(). This is why all scikit-learn models share a consistent interface—they
all inherit from the same base classes.

# Preview: scikit-learn models use inheritance
# All estimators inherit common methods from base classes
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

# Both models have the same interface because they inherit from the same base
class↪

lr = LinearRegression()
dt = DecisionTreeRegressor()

# Both have fit(), predict(), score() methods inherited from base classes
print("LinearRegression methods:", [m for m in dir(lr) if not

m.startswith('_')][:5])↪

LinearRegression methods: ['copy_X', 'fit', 'fit_intercept',
'get_metadata_routing', 'get_params']

print("DecisionTreeRegressor methods:", [m for m in dir(dt) if not
m.startswith('_')][:5])↪

DecisionTreeRegressor methods: ['apply', 'ccp_alpha', 'class_weight',
'cost_complexity_pruning_path', 'criterion']

2.5.4 Why Use OOP?

OOP helps organize complex programs by grouping related data and functionality together.
This makes code:

• More intuitive: Objects model real-world entities
• Easier to maintain: Changes to one class don’t affect unrelated code
• Reusable: Classes can be used in multiple parts of your program
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In data science, you’ll often work with objects like DataFrames (from pandas), models (from
scikit-learn), or plots (from matplotlib), even if you don’t create your own classes frequently.

# Example: You're already using OOP when working with lists!
my_list = [1, 2, 3] # my_list is an object of class 'list'
my_list.append(4) # append is a method
my_list.sort() # sort is a method
print(len(my_list)) # len works with the object's internal data

4

For this course, understanding how to use objects and their methods is more important than
creating complex class hierarchies. Most of the time, you’ll be using classes created by
others (like pandas DataFrames or scikit-learn models) rather than writing your own.

2.5.5 Exercises

Now that we have covered the basics of object-oriented programming in Python, here are some
exercises to help reinforce your understanding of classes, objects, attributes, methods, and
inheritance.

1. Create a Rectangle class with width and height attributes. Add methods area() that
returns the area and perimeter() that returns the perimeter. Create a rectangle object
and test both methods.

2. Create a Counter class with a count attribute that starts at 0. Add methods increment()
to increase the count by 1, decrement() to decrease it by 1, and reset() to set it back
to 0. Test your class by creating a counter and calling its methods.

3. Create a Vehicle parent class with attributes brand and year, and a method info()
that prints vehicle information. Then create a Car child class that adds a num_doors
attribute and overrides the info() method to also display the number of doors.

2.6 Essential Packages

In this section, we will introduce some of the most essential packages in Python for data science
and scientific computing. These packages provide powerful tools and functionalities that make
it easier to work with data, perform numerical computations, and create visualizations.
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INFO Modules vs. Packages

A module, in Python, is a program that can be imported into interactive mode or other
programs for use. A Python package typically comprises multiple modules. Physically, a
package is a directory containing modules and possibly subdirectories, each potentially
containing further modules. Conceptually, a package links all modules together using the
package name for reference.

2.6.1 Scientific Computing: NumPy

NumPy (Numerical Python) is one of the most common packages used in Python. In fact,
numerous computational packages that offer scientific capabilities utilize NumPy’s array objects
as a standard interface for data exchange. That’s why understanding NumPy arrays and
array-based computing principles is crucial.

NumPy offers a vast array of efficient methods for creating and manipulating numerical data
arrays. Unlike Python lists, which can accommodate various data types within a single list,
NumPy arrays require homogeneity among their elements for efficient mathematical operations.
Utilizing NumPy arrays provides advantages such as faster execution and reduced memory
consumption compared to Python lists. With NumPy, data storage is optimized through the
specification of data types, enhancing code optimization.

INFO Note

Documentation for this package is available at https://numpy.org/doc/stable/.

To use NumPy in your code, you typically import it with the alias np

import numpy as np

2.6.1.1 Creating NumPy Arrays

Arrays serve as a fundamental data structure within the NumPy. They represent a grid of
values containing information on raw data, element location, and interpretation. Elements
share a common data type, known as the array dtype.

One method of initializing NumPy arrays involves using Python lists, with nested lists employed
for two- or higher-dimensional data structures.

a = np.array([1, 2, 3, 4, 5, 6])
print("1D array:", a)
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1D array: [1 2 3 4 5 6]

We can access the elements through indexing.

a[0]

np.int64(1)

Arrays are N-Dimensional (that’s why sometimes we refer to them as ndarray). That means
that NumPy arrays will encompass vector (1-Dimensions), Matrices (2D) or tensors (3D and
higher). We can get all the information of the array by checking its attributes. To create a 2D
array, we can use nested lists:

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

Mathematically, we can think of this as a matrix with 2 rows and 4 columns, i.e.,

𝑎 = [1 2 3 4
5 6 7 8]

We can check its attributes to get more information about the array:

print('Dimensions/axes:', a.ndim)

Dimensions/axes: 2

print('Shape (size of array in each dimension):', a.shape)

Shape (size of array in each dimension): (2, 4)

print('Size (total number of elements):', a.size)

Size (total number of elements): 8

print('Number of bytes:', a.nbytes)

Number of bytes: 64

print('Data type:', a.dtype)

Data type: int64
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print('Item size (in bytes):', a.itemsize)

Item size (in bytes): 8

We have already seen how to access elements in a 1D array. For 2D arrays, we can use two
indices: the first for the row and the second for the column.

element = a[0, 2] # Access the element in the first row and third column
print("Element at (0, 2):", element)

Element at (0, 2): 3

We can also use slicing to access subarrays. For example, to get the first two rows and the first
three columns:

subarray = a[0:2, 0:3]
print("Subarray:\n", subarray)

Subarray:
[[1 2 3]
[5 6 7]]

We don’t need to specify both indices all the time. For example, to get the first row, we can
do

first_row = a[0, :]
print("First row:", first_row)

First row: [1 2 3 4]

or to get the second column

second_column = a[:, 1]
print("Second column:", second_column)

Second column: [2 6]

We can initialize arrays using different commands depending on our aim. For instance, the
most straightforward case would be to pass a list to np.array() to create one:

arr1 = np.array([5,6,7])
arr1
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array([5, 6, 7])

However, sometimes we are more ambiguous and have no information on what our array contains.
We just need to be able to initialize an array so that later on, our code, can update it. For this,
we typically create arrays of the desired dimensions and fill them with zeros (np.zeros()),
ones (np.ones()), with a given value (np.full()) or without initializing (np.empty()).

LIGHTBULB Tip

When working with large data, np.empty() can be faster and more efficient. Also, large
arrays can take up most of your memory and, in those cases, carefully establishing the
dtype() can help to manage memory more efficiently (i.e., choose 8 bits over 64 bits.)

np.zeros(4)

array([0., 0., 0., 0.])

np.ones((2,3))

array([[1., 1., 1.],
[1., 1., 1.]])

To create higher-dimensional arrays, we can pass a tuple representing the shape of the array:

np.ones((3,2,1))

array([[[1.],
[1.]],

[[1.],
[1.]],

[[1.],
[1.]]])

This created a 3D array with 3 layers of matrices with 2 rows and 1 column.

We can use np.full() to create an array of constant values that we specify in the fill_value
option.

np.full((2,2) , fill_value= 4)
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array([[4, 4],
[4, 4]])

np.empty() creates an array without initializing its values. The values in the array will be
whatever is already present in the allocated memory, which can be random and unpredictable.

np.empty(2)

array([0., 1.])

With np.linspace(), we can create arrays with evenly spaced values over a specified range.
The syntax is np.linspace(start, stop, num), where start is the starting value, stop is
the ending value, and num is the number of evenly spaced values to generate.

np.linspace(0, 1, 5) # Generates 5 evenly spaced values between 0 and 1

array([0. , 0.25, 0.5 , 0.75, 1. ])

np.arange() is another useful function to create arrays with evenly spaced values, similar to
the built-in range() function but returning a NumPy array. The syntax is np.arange(start,
stop, step), where start is the starting value, stop is the ending value (exclusive), and step
is the increment between each value.

np.arange(0, 10, 2) # Generates values from 0 to 8 with a step of 2

array([0, 2, 4, 6, 8])

Note that both np.linspace() and np.arange() can be used to create sequences of numbers,
but they differ in how you specify the spacing and the number of elements. In general, use
np.linspace() when you want a specific number of evenly spaced values over a range, and
use np.arange() when you want to specify the step size between values.

Sometimes, you might also need to create identity matrices, which are square matrices with
ones on the diagonal and zeros elsewhere. You can use np.eye() to create an identity matrix
of a specified size.

np.eye(3) # Creates a 3x3 identity matrix

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
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Or you might want to create diagonal matrices with specific values on the diagonal. You can
use np.diag() for this purpose.

np.diag([1, 2, 3]) # Creates a diagonal matrix with 1, 2, 3 on the diagonal

array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])

Finally, to create random arrays, NumPy provides several functions in the np.random module.
For example, you can create an array of random floats between 0 and 1 using np.random.rand(),
or an array of random integers within a specified range using np.random.randint(), or a
normal distribution using np.random.randn().

np.random.rand(2, 3) # Creates a 2x3 array of random floats between 0 and 1

array([[0.13998123, 0.62860598, 0.18765128],
[0.43531749, 0.53105854, 0.10783084]])

np.random.randint(0, 10, size=(2, 3)) # Creates a 2x3 array of random
integers between 0 and 9↪

array([[2, 9, 2],
[6, 0, 6]])

np.random.randn(2, 3) # Creates a 2x3 array of random floats from a standard
normal distribution↪

array([[-0.537313 , -0.49899483, 0.75224564],
[ 1.48123443, 0.225615 , 0.40000993]])

LIGHTBULB Random Seed

When generating random numbers, it’s often useful to set a random seed using
np.random.seed(). This ensures that the sequence of random numbers generated is
reproducible, meaning that you will get the same random numbers each time you run
your code with the same seed. This is particularly important for debugging and sharing
results.
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2.6.1.2 Managing Array Data

Arrays accept common operations like sorting, concatenating and finding unique elements.

For instance, using the sort() method we can sort elements within an array.

arr1 = np.array((10,2,5,3,50,0))
np.sort(arr1)

array([ 0, 2, 3, 5, 10, 50])

In multidimensional arrays, we can sort the elements of a given dimension by specifying the
axis along which to sort. When axis=0, the operation collapses along the first dimension (rows
in a 2D array), giving one result per column. When axis=1, it collapses along the second
dimension (columns in a 2D array), giving one result per row.

mat1 = np.array([[1,2,3],[8,1,5]])
mat1

array([[1, 2, 3],
[8, 1, 5]])

mat1.sort(axis=1) # Sort along columns
mat1

array([[1, 2, 3],
[1, 5, 8]])

Using concatenate we can join the elements of two arrays along an existing axis.

arr1 = np.array((1,2,3))
arr2 = np.array((6,7,8))
np.concatenate((arr1,arr2))

array([1, 2, 3, 6, 7, 8])

Instead, if we want to concatenate along a new axis, we use vstack() and hstack()

np.vstack((arr1,arr2)) # Vertical stack

array([[1, 2, 3],
[6, 7, 8]])

92



np.hstack((arr1,arr2)) # Horizontal stack

array([1, 2, 3, 6, 7, 8])

It is also possible to reshape arrays. For instance, let’s reshape the concatenation of arr1 and
arr2 to 3 rows and 2 columns

arr_c = np.concatenate((arr1,arr2))
arr_c.reshape((3,2))

array([[1, 2],
[3, 6],
[7, 8]])

We can also perform aggregation functions over all elements, like finding the minimum, maxi-
mum, means, sum of elements and much more.

print(arr1.min())

1

print(arr1.sum())

6

print(arr1.max())

3

print(arr1.mean())

2.0

This can also be done over a specific axis in multidimensional arrays. For example, let’s create
a 2D array and find the sum across rows and columns

mat2 = np.array([[1,2,3],[4,5,6]])
print(mat2.sum(axis=0)) # Sum along rows

[5 7 9]
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print(mat2.sum(axis=1)) # Sum along columns

[ 6 15]

It is also possible to get only the unique elements of an array or to count how many elements
are repeated.

arr1 = np.array((1,2,3,3,1,1,5,6,7,8,11,11))
print(np.unique(arr1))

[ 1 2 3 5 6 7 8 11]

unq, count = np.unique(arr1, return_counts=True)
print("Unique elements:", unq)

Unique elements: [ 1 2 3 5 6 7 8 11]

print("Counts:", count)

Counts: [3 1 2 1 1 1 1 2]

Using where(), we can find the indices of elements that satisfy a given condition.

arr1 = np.array((10,15,20,25,30,35,40))
indices = np.where(arr1 > 25)
print("Indices of elements greater than 25:", indices)

Indices of elements greater than 25: (array([4, 5, 6]),)

We can also use boolean indexing to filter elements based on a condition.

filtered_elements = arr1[arr1 > 25]
print("Elements greater than 25:", filtered_elements)

Elements greater than 25: [30 35 40]

And we can replace elements that meet a condition using np.where()

new_arr = np.where(arr1 > 25, -1, arr1) # Replace elements greater than 25
with -1↪

print("Array after replacement:", new_arr)

Array after replacement: [10 15 20 25 -1 -1 -1]
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2.6.1.3 Array Operations

NumPy arrays support common operations as addition, subtraction and multiplication. These
operations are performed element-wise, meaning that they are applied to each corresponding
element in the arrays.

A = np.array(((1,2,3),
(4,5,6)))

B = np.array(((10,20,30),
(40,50,60)))

Element-wise addition, subtraction and multiplication can be performed with +, - and *.

A + B

array([[11, 22, 33],
[44, 55, 66]])

B - A

array([[ 9, 18, 27],
[36, 45, 54]])

A * B

array([[ 10, 40, 90],
[160, 250, 360]])

To multiply (*) or divide (/) all elements by an scalar, we just specify the scalar.

A * 10

array([[10, 20, 30],
[40, 50, 60]])

B / 10

array([[1., 2., 3.],
[4., 5., 6.]])

Note that NumPy automatically broadcasts the scalar to all elements of the array.
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LIGHTBULB Broadcasting

Broadcasting is a powerful mechanism in NumPy that allows operations to be performed
on arrays of different shapes. When performing operations between arrays of different
shapes, NumPy automatically expands the smaller array along the dimensions of the
larger array so that they have compatible shapes. This process is called broadcasting.
For example, consider adding a 1D array to a 2D array. NumPy will “broadcast” the 1D
array across the rows of the 2D array to perform the addition.

A = np.array([[1, 2, 3],
[4, 5, 6]])

B = np.array([10, 20, 30]) # 1D array
C = A + B # B is broadcasted across the rows of A
print(C)

[[11 22 33]
[14 25 36]]

Comparing NumPy arrays is also possible using operators as ==, !=, and the like. Comparisons
will result in an array of booleans indicating if the condition is met for a given element.

arr1 = np.array(((1,2,3),(4,5,6)))
arr2 = np.array(((1,5,3),(7,2,6)))
arr1==arr2

array([[ True, False, True],
[False, False, True]])

Recall that we use double equals == for comparison, while a single equals = is used for
assignment.

Note that element-wise multiplication is different from matrix multiplication. Matrix multipli-
cation is achieved with either @ or matmul().

np.matmul(arr1,arr2.T) # Note the transpose of arr2 to match dimensions

array([[20, 29],
[47, 74]])

arr1 @ arr2.T # Note the transpose of arr2 to match dimensions

array([[20, 29],
[47, 74]])
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2.6.1.4 Exercises

1. Create a 1D array with all integer elements from 1 to 10 (both included). No hard-coding
allowed!

2. From the array you created in 1, create one that contains all odd elements and one with
all even elements.

3. Create a new array that replaces all elements in 1 that are odd by -1.
4. Create a 3-by-3 matrix filled with ‘True’ values (i.e., booleans).
5. Suppose you have array a=np.array(['a','b','c','d','e','f','g']) and b =

np.array(['g','h','c','a','e','w','g']). Find all elements that are equal. Can
you get the position where the elements of both arrays match?

6. Write a function that takes a element an array and prints elements that are divisible by
a given number. Try it creating an array from 1 to 20 and printing divisibles by 3.

7. Consider two matrices, A and B, both of size 100x100, filled with random integer values
between 1 and 10. Implement a function to perform element-wise multiplication of these
matrices using nested loops. Implement the same operation using Numpy’s vectorized
multiplication. Repeat again with matrices of size 1000x1000, 10000x10000 and compare
the execution time. Which one is faster?

2.6.2 Data Management: Pandas

Pandas is an open source library providing high-performance, easy-to-use data structures and
data analysis tools. Pandas is particularly suited to the analysis of tabular data, i.e. data that
can go into a table. In other words, if you can imagine the data in an Excel spreadsheet, then
Pandas is the tool for the job.

• A fast and efficient DataFrame object for data manipulation with indexing
• Tools for reading and writing data: CSV, Excel, SQL
• Intelligent data alignment and integrated handling of missing data
• Flexible reshaping and pivoting of data sets
• Intelligent label-based slicing, indexing, and subsetting of large data sets
• High performance aggregating, merging, joining or transforming data
• Hierarchical indexing provides an intuitive way of working with high-dimensional data
• Time series-functionality: date-based indexing, frequency conversion, moving windows,

date shifting and lagging

INFO Note

Documentation for this package is available at https://pandas.pydata.org/docs/.

To use Pandas, you typically import it with the alias pd
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import pandas as pd

We will also import NumPy as it is often used alongside Pandas for numerical operations.

import numpy as np

Pandas builds on two main data structures: Series and DataFrames. Series represent 1D
arrays while DataFrames are 2D labeled arrays. The easiest way to think about both structures
is to conceptualize DataFrames as containers of lower dimension data. That is, DataFrames
columns are composed of Series, and each of the elements of a Series (i.e., the rows of the
DataFrame) are individual scalar (numbers or strings) values. In plain words, Series are
columns made of scalar elements and DataFrames are collections of Series that get an assigned
label. All pandas data structures are value-mutable (i.e., we can change the values of elements
and replace DataFrames) but some are not always size-mutable. The length of a Series cannot
be changed, but, for example, columns can be inserted into a DataFrame.

2.6.2.1 Pandas Series

A Series is a one-dimensional labeled array capable of holding any data type (integers, strings,
floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the
index. A Series can be created from a list, dictionary, or scalar value using the pd.Series()
constructor. To create a Series from a list, you can do the following:

data = [10, 20, 30, 40, 50]
series = pd.Series(data)

If you want to specify custom index labels, you can pass a list of labels to the index parameter:

data = [10, 20, 30, 40, 50]
labels = ['a', 'b', 'c', 'd', 'e']
series = pd.Series(data, index=labels)

You can additionally assign a name to the Series using the name parameter:

data = [10, 20, 30, 40, 50]
labels = ['a', 'b', 'c', 'd', 'e']
series = pd.Series(data, index=labels, name='My Series')
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These functions work the same way when creating a Series from a NumPy array. When
creating a Series from a dictionary, the keys of the dictionary become the index labels, and
the values become the data:

data = {'a': 10, 'b': 20, 'c': 30}
series = pd.Series(data)

You can access elements in a Series using their index labels or integer positions. For example,
to access the element with label ‘b’:

value = series['b']
print("Value at index 'b':", value)

Value at index 'b': 20

If you want to access elements by their integer position, you can use the iloc attribute:

value = series.iloc[1] # Access the second element (index 1)
print("Value at position 1:", value)

Value at position 1: 20

Note that both label-based and positional indexing can be used interchangeably in many
cases.

.loc is used for label-based indexing, which means you access elements by their index labels:

Syntax Description Example Result

series.loc[label]Single label access s.loc['b'] Value at index ‘b’
series.loc[label_list]Multiple labels s.loc[['a',

'c']]
Series with values
at ‘a’ and ‘c’

series.loc[start:end]Slice by labels (inclusive) s.loc['a':'c'] Series from ‘a’ to
‘c’ (inclusive)

series.loc[condition]Boolean indexing s.loc[s > 5] Values where
condition is True

.iloc is used for positional indexing, which means you access elements by their integer position
in the Series:
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Syntax Description Example Result

series.iloc[position]Single position access s.iloc[1] Value at position
1

series.iloc[position_list]Multiple positions s.iloc[[0, 2]] Series with values
at positions 0 and
2

series.iloc[start:end]Slice by positions (exclusive
end)

s.iloc[1:3] Series from
position 1 to 2

series.iloc[negative_pos]Negative indexing s.iloc[-1] Value at last
position

Key Differences:

1. Indexing method:

• .loc uses the actual index labels (strings, dates, etc.)
• .iloc uses integer positions (0, 1, 2, …)

2. Slicing behavior:

• .loc slicing is inclusive of both endpoints
• .iloc slicing is exclusive of the end position

You can retrieve all index labels and values of a Series using the index and values attributes,
respectively:

index_labels = series.index
print("Index labels:", index_labels)

Index labels: Index(['a', 'b', 'c'], dtype='object')

values = series.values
print("Values:", values)

Values: [10 20 30]

You can perform various operations on Series, such as arithmetic operations, aggregation
functions, and filtering. For example, to add a scalar value to all elements in the Series:

new_series = series + 5
print("Series after adding 5:\n", new_series)
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Series after adding 5:
a 15
b 25
c 35
dtype: int64

You can also filter the Series based on a condition:

filtered_series = series[series > 20]
print("Filtered Series (values > 20):\n", filtered_series)

Filtered Series (values > 20):
c 30
dtype: int64

They work and behave similarly to NumPy arrays in many ways but with additional functionality
for handling missing data and labeled data.

2.6.2.2 Pandas DataFrames

Pandas Series are great for one-dimensional data, but in data science, we often work with
two-dimensional data tables. This is where Pandas DataFrames come into play. A DataFrame
is a two-dimensional labeled data structure with columns of potentially different types. You
can think of it as a spreadsheet or SQL table, or a dictionary of Series objects.

2.6.2.2.1 Creating DataFrames

You can create a DataFrame from various data sources, such as dictionaries, lists of lists, or
NumPy arrays. Here’s an example of creating a DataFrame from a dictionary:

data = {
'Name': ['Alba', 'Jesus', 'Yang'],
'Age': [30, 25, 35],
'City': ['New York', 'Los Angeles', 'Chicago']

}
df = pd.DataFrame(data)
df = df.set_index('Name') # Set 'Name' as the index
print("DataFrame:\n", df)

DataFrame:
Age City

Name
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Alba 30 New York
Jesus 25 Los Angeles
Yang 35 Chicago

You can also create a DataFrame from a list of lists:

# Creating a DataFrame from a list of lists
pd.DataFrame(

data=[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

],
index=["R1", "R2", "R3"],
columns=["C1", "C2", "C3"]

)

C1 C2 C3
R1 1 2 3
R2 4 5 6
R3 7 8 9

There are several more ways to create DataFrames, including from CSV files, Excel files, SQL
databases, and more. Most of the time, you’ll be loading data from external sources rather
than creating DataFrames from scratch.

Indexing works similarly to Series, but now you have both row and column labels to consider.
Here are some common ways to index and select data in a DataFrame:

Method Description

df[column_label] or df.column_label or
df.loc[:, column_label]

Access a single column by label (returns a
Series)

df[[col1, col2]] Access multiple columns by label (returns a
DataFrame)

df.loc[row_labels, column_labels] Access rows and columns by label (names)
df.iloc[row_positions,
column_positions]

Access rows and columns by position
(integers)

df[boolean_condition] Filter rows based on a boolean condition

Consider the following DataFrame
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df = pd.DataFrame(
data={

"area": ["USA", "Eurozone", "Japan", "UK", "Canada",
"Australia"],↪

"year": [2024, 2024, 2024, 2024, 2024, 2024],
"gdp_growth": [2.1, 1.3, 0.7, 1.5, 1.8, 2.0], # in percent
"inflation": [3.2, 2.5, 1.0, 2.8, 2.2, 2.6], # in percent
"policy_rate": [5.25, 4.00, -0.10, 5.00, 4.75, 4.35], # in percent
"unemployment": [3.8, 6.5, 2.6, 4.2, 5.1, 4.0], # in percent
"fx_usd": [1.00, 1.09, 143.5, 0.79, 1.36, 1.51] # USD per

unit of local currency↪

},
index=["A", "B", "C", "D", "E", "F"]

)
df

area year gdp_growth inflation policy_rate unemployment fx_usd
A USA 2024 2.1 3.2 5.25 3.8 1.00
B Eurozone 2024 1.3 2.5 4.00 6.5 1.09
C Japan 2024 0.7 1.0 -0.10 2.6 143.50
D UK 2024 1.5 2.8 5.00 4.2 0.79
E Canada 2024 1.8 2.2 4.75 5.1 1.36
F Australia 2024 2.0 2.6 4.35 4.0 1.51

First, we will set the “areas” column as the index of the DataFrame. This will allow us to
access rows by area name. We can do this using the set_index() method.

df = df.set_index("area")

We could also do it in-place (modifying the original DataFrame directly)

df.set_index("area", inplace=True)

2.6.2.2.2 Inspecting DataFrames

You can inspect the first few rows of a DataFrame using the head() method and the last few
rows using the tail() method. By default, both methods display 5 rows, but you can specify
a different number as an argument.

df.head() # First 5 rows
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year gdp_growth inflation policy_rate unemployment fx_usd
area
USA 2024 2.1 3.2 5.25 3.8 1.00
Eurozone 2024 1.3 2.5 4.00 6.5 1.09
Japan 2024 0.7 1.0 -0.10 2.6 143.50
UK 2024 1.5 2.8 5.00 4.2 0.79
Canada 2024 1.8 2.2 4.75 5.1 1.36

df.tail(3) # Last 3 rows

year gdp_growth inflation policy_rate unemployment fx_usd
area
UK 2024 1.5 2.8 5.00 4.2 0.79
Canada 2024 1.8 2.2 4.75 5.1 1.36
Australia 2024 2.0 2.6 4.35 4.0 1.51

You can get a summary of the DataFrame using the info() method, which provides information
about the index, columns, data types, and memory usage.

df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 6 entries, USA to Australia
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 year 6 non-null int64
1 gdp_growth 6 non-null float64
2 inflation 6 non-null float64
3 policy_rate 6 non-null float64
4 unemployment 6 non-null float64
5 fx_usd 6 non-null float64
dtypes: float64(5), int64(1)
memory usage: 336.0+ bytes

You can get basic statistical details of the DataFrame using the describe() method, which
provides measures like mean, standard deviation, min, max, and quartiles for numerical
columns.

df.describe()
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year gdp_growth inflation policy_rate unemployment fx_usd
count 6.0 6.000000 6.000000 6.000000 6.000000 6.000000
mean 2024.0 1.566667 2.383333 3.875000 4.366667 24.875000
std 0.0 0.520256 0.754763 1.998187 1.318585 58.114711
min 2024.0 0.700000 1.000000 -0.100000 2.600000 0.790000
25% 2024.0 1.350000 2.275000 4.087500 3.850000 1.022500
50% 2024.0 1.650000 2.550000 4.550000 4.100000 1.225000
75% 2024.0 1.950000 2.750000 4.937500 4.875000 1.472500
max 2024.0 2.100000 3.200000 5.250000 6.500000 143.500000

2.6.2.2.3 Indexing and Selecting DataFrames

We can get a single column as a Series using python’s getitem syntax on the DataFrame
object.

df['inflation'] # returns a series

area
USA 3.2
Eurozone 2.5
Japan 1.0
UK 2.8
Canada 2.2
Australia 2.6
Name: inflation, dtype: float64

type(df['inflation'])

<class 'pandas.core.series.Series'>

…or using attribute syntax.

df.inflation # returns a series

area
USA 3.2
Eurozone 2.5
Japan 1.0
UK 2.8
Canada 2.2
Australia 2.6
Name: inflation, dtype: float64
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If we use a list of column names, we get a DataFrame back

df[['inflation']] # returns a DataFrame

inflation
area
USA 3.2
Eurozone 2.5
Japan 1.0
UK 2.8
Canada 2.2
Australia 2.6

type(df[['inflation']])

<class 'pandas.core.frame.DataFrame'>

This is useful for selecting multiple columns at once.

df[['inflation', 'unemployment']] # returns a dataframe with selected
columns↪

inflation unemployment
area
USA 3.2 3.8
Eurozone 2.5 6.5
Japan 1.0 2.6
UK 2.8 4.2
Canada 2.2 5.1
Australia 2.6 4.0

We can use .loc to select rows and columns by label, and .iloc to select rows and columns
by position.

• .loc uses labels (names) for both rows and columns. The syntax is df.loc[rows,
columns]. Both can be single labels, lists, or slices. Slices with .loc are inclusive of
the end.

• .iloc uses integer positions (like Python lists). The syntax is df.iloc[rows, columns].
Slices with .iloc are exclusive of the end (like standard Python slicing).

Suppose df looks like this:
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- name age city

0 Alice 23 Madrid
1 Bob 34 London
2 Carol 29 Berlin

• df['age'] or df.age -> Series with ages.
• df[['name', 'city']] -> DataFrame with just name and city columns.
• df.loc[1, 'city'] -> 'London' (row label 1, column ‘city’).
• df.loc[0:1, ['name', 'age']] -> Rows 0 to 1, columns ‘name’ and ‘age’ (inclusive).
• df.iloc[0:2, 1:3] -> Rows 0 to 1, columns 1 and 2 (note that row 2 and column 3

are not included).
• df[df['age'] > 25] -> Rows where age is greater than 25.

As indicated above, both .loc and .iloc can take single labels/positions, lists of labels/posi-
tions, or slices. Here are some additional tips:

• Use : to select all rows or columns:

– df.loc[:, 'age'] (all rows, ‘age’ column).
– df.iloc[1, :] (row 1, all columns).

• Remember: .loc is label-based and inclusive; .iloc is position-based and exclusive.

df.loc["UK","gdp_growth"] # get the value in row "UK" and column "gdp_growth"

np.float64(1.5)

df.iloc[3,1] # get the value in row 3 and column 1 (recall: python uses
zero-based index)↪

np.float64(1.5)

You can also get subsets of rows and columns using slices or lists

df.loc["USA":"UK",["policy_rate", "fx_usd"]] # Subset rows from "USA" to "UK"
and columns "policy_rate" and "fx_usd"↪

policy_rate fx_usd
area
USA 5.25 1.00
Eurozone 4.00 1.09
Japan -0.10 143.50
UK 5.00 0.79

107



We can filter rows based on a boolean condition.

df[df['unemployment'] > 5.0] # returns a dataframe with rows where
unemployment is greater than 5.0↪

year gdp_growth inflation policy_rate unemployment fx_usd
area
Eurozone 2024 1.3 2.5 4.00 6.5 1.09
Canada 2024 1.8 2.2 4.75 5.1 1.36

To filter rows in a DataFrame based on multiple conditions, you can use logical operators:

Opera-
tor

Sym-
bol Meaning General Pattern

AND & All conditions must be true df[(condition1) &
(condition2)]

OR \| At least one condition must be true df[(condition1) \|
(condition2)]

NOT ~ Negates a condition (condition is
false)

df[~(condition)]

You can combine these operators to build more complex filters as needed. For example

df[(condition1 & condition2) | (~condition3 & condition4)]

To reduce the likelihood of mistakes, always enclose each condition in parentheses to ensure
correct evaluation.

The following example filters the DataFrame to include only rows where the fx_usd is less
than 1.0 and the inflation is greater than 2.0:

df[(df['fx_usd'] < 1.0) & (df["inflation"] > 2.0)]

year gdp_growth inflation policy_rate unemployment fx_usd
area
UK 2024 1.5 2.8 5.0 4.2 0.79

An alternative to boolean indexing is the query() method, which allows you to filter rows
using a string expression. This can be more readable, especially for complex conditions:

df.query("fx_usd < 1.0 and inflation > 2.0")
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year gdp_growth inflation policy_rate unemployment fx_usd
area
UK 2024 1.5 2.8 5.0 4.2 0.79

The query() method supports standard comparison operators (<, >, ==, !=, <=, >=) and logical
operators (and, or, not). You can also reference variables from the local environment using
the @ prefix:

threshold = 2.0
df.query("inflation > @threshold")

year gdp_growth inflation policy_rate unemployment fx_usd
area
USA 2024 2.1 3.2 5.25 3.8 1.00
Eurozone 2024 1.3 2.5 4.00 6.5 1.09
UK 2024 1.5 2.8 5.00 4.2 0.79
Canada 2024 1.8 2.2 4.75 5.1 1.36
Australia 2024 2.0 2.6 4.35 4.0 1.51

2.6.2.2.4 DataFrame Operations

There are many operations you can perform on DataFrames. Here are some common ones:

Adding Columns:

Method Code Pattern (Abstraction) Notes

Direct assign df[new_col] = values Adds or overwrites a column
assign() df.assign(new_col=values) Adds a new column (returns a new

DataFrame)
insert() df.insert(loc, new_col,

values)
Adds at specific position

Multiple cols df[[col1, col2]] = values Assign multiple columns at once

Adding Rows:

Method Code Pattern (Abstraction) Notes

loc df.loc[new_label] = values Adds or overwrites a row by index label
iloc df.iloc[position] = values Overwrites a row at a specific integer

position (does not add a new row)
concat() df = pd.concat([df,

new_rows_df])
Adds one or more new rows from another
DataFrame
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For example, to add a new column that approximates real GDP growth (i.e., nominal GDP
growth minus inflation):

df["real_gdp_growth"] = df.gdp_growth - df.inflation # Create a new column
as the difference between gdp_growth and inflation↪

df["avg_weather"] = [20.5, 18.0, 15.0, 12.5, 10.0, 22.0] # Add a new column
with average weather data↪

df

year gdp_growth inflation ... fx_usd real_gdp_growth
avg_weather

area ...
USA 2024 2.1 3.2 ... 1.00 -1.1
20.5
Eurozone 2024 1.3 2.5 ... 1.09 -1.2
18.0
Japan 2024 0.7 1.0 ... 143.50 -0.3
15.0
UK 2024 1.5 2.8 ... 0.79 -1.3
12.5
Canada 2024 1.8 2.2 ... 1.36 -0.4
10.0
Australia 2024 2.0 2.6 ... 1.51 -0.6
22.0

[6 rows x 8 columns]

Using assign(), we can do the same without modifying the original DataFrame (note that
assign() returns a new DataFrame):

df = df.drop(columns=["real_gdp_growth"]) # Remove previously added column
df_new = df.assign(real_gdp_growth=df.gdp_growth - df.inflation)
df_new

year gdp_growth inflation ... fx_usd avg_weather
real_gdp_growth

area ...
USA 2024 2.1 3.2 ... 1.00 20.5
-1.1
Eurozone 2024 1.3 2.5 ... 1.09 18.0
-1.2
Japan 2024 0.7 1.0 ... 143.50 15.0
-0.3
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UK 2024 1.5 2.8 ... 0.79 12.5
-1.3
Canada 2024 1.8 2.2 ... 1.36 10.0
-0.4
Australia 2024 2.0 2.6 ... 1.51 22.0
-0.6

[6 rows x 8 columns]

Using insert(), we can add a new column at a specific position. For example, to insert a
gdp_per_capita column as the second column (index 1):

df.insert(
loc=1, # Insert at the second position (0-based index)
column='gdp_per_capita', # Name of the new column
value=[60000, np.nan, 40000, np.nan, 55000, 70000] # Values for the new
column↪

)
df

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0

[6 rows x 8 columns]

Deleting data:
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What to
Remove

Method/Op-
tion Code Pattern (Abstraction) Notes

Columns by
label

drop() df.drop([col1, col2, ...],
axis=1)

Returns new
DataFrame

Columns by
label
(in-place)

drop() df.drop([col1, col2, ...],
axis=1, inplace=True)

Modifies original
DataFrame

Columns by
position

drop() df.drop(df.columns[[pos1,
pos2, ...]], axis=1)

Use integer positions

Columns with
missing values

dropna() df.dropna(axis=1) Removes columns with
any missing

Rows by label drop() df.drop([row1, row2, ...],
axis=0)

Returns new
DataFrame

Rows by label
(in-place)

drop() df.drop([row1, row2, ...],
axis=0, inplace=True)

Modifies original
DataFrame

Rows by
position

drop() df.drop(df.index[[pos1, pos2,
...]], axis=0)

Use integer positions

Rows with
missing values

dropna() df.dropna(axis=0) Removes rows with any
missing

Duplicate
rows

drop_duplicates()df.drop_duplicates() Removes duplicate
rows

For example, to remove the avg_weather column we just added

df.drop("avg_weather", axis=1)

year gdp_per_capita gdp_growth ... policy_rate unemployment
fx_usd

area ...
USA 2024 60000.0 2.1 ... 5.25 3.8
1.00
Eurozone 2024 NaN 1.3 ... 4.00 6.5
1.09
Japan 2024 40000.0 0.7 ... -0.10 2.6
143.50
UK 2024 NaN 1.5 ... 5.00 4.2
0.79
Canada 2024 55000.0 1.8 ... 4.75 5.1
1.36
Australia 2024 70000.0 2.0 ... 4.35 4.0
1.51
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[6 rows x 7 columns]

We can also drop columns with NaN values

df.dropna(axis=1) # Drops columns with any NaN values

year gdp_growth inflation ... unemployment fx_usd
avg_weather

area ...
USA 2024 2.1 3.2 ... 3.8 1.00
20.5
Eurozone 2024 1.3 2.5 ... 6.5 1.09
18.0
Japan 2024 0.7 1.0 ... 2.6 143.50
15.0
UK 2024 1.5 2.8 ... 4.2 0.79
12.5
Canada 2024 1.8 2.2 ... 5.1 1.36
10.0
Australia 2024 2.0 2.6 ... 4.0 1.51
22.0

[6 rows x 7 columns]

Or fill it up with default “fallback” data:

df.fillna(df.gdp_per_capita.median()) # Fills NaN values with the median of
the gdp_per_capita column↪

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
Eurozone 2024 57500.0 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 57500.0 1.5 ... 4.2 0.79
12.5
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
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Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0

[6 rows x 8 columns]

Note that both drop() and fillna() return a new DataFrame by default. Thus, when we
access df again, we will see that it still contains the avg_weather column and any NaN
values.

df # Original DataFrame remains unchanged

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0

[6 rows x 8 columns]

We can also sort the entries in dataframes, e.g. alphabetically by index or numerically by
column values

What to Sort
Method/Op-
tion Code Pattern (Abstraction) Notes

By column(s) sort_values() df.sort_values(by=col) Sort by one column
(ascending by default)

By multiple
columns

sort_values() df.sort_values(by=[col1,
col2])

Sort by several columns
(priority order)

By column(s),
descending

sort_values() df.sort_values(by=col,
ascending=False)

Sort in descending order

By multiple
columns,
custom order

sort_values() df.sort_values(by=[col1,
col2], ascending=[True,
False])

Custom order for each
column
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What to Sort
Method/Op-
tion Code Pattern (Abstraction) Notes

By index sort_index() df.sort_index() Sort by row index
(ascending by default)

By index,
descending

sort_index() df.sort_index(ascending=False)Sort index in descending
order

By columns
(column
labels)

sort_index() df.sort_index(axis=1) Sort columns by their labels

By columns,
descending

sort_index() df.sort_index(axis=1,
ascending=False)

Sort columns in descending
order

For example, to sort the DataFrame by inflation in descending order

df.sort_values(by='inflation', ascending=False)

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0
Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0

[6 rows x 8 columns]

To sort by multiple columns, e.g., first by year (ascending) and then by gdp_growth (descend-
ing):

df.sort_values(by=['year', 'gdp_growth'], ascending=[True, False])

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather
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area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0

[6 rows x 8 columns]

We can also sort by index

df.sort_index()

year gdp_per_capita gdp_growth ... unemployment fx_usd
avg_weather

area ...
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5

[6 rows x 8 columns]

or column names

df.sort_index(axis=1)
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avg_weather fx_usd gdp_growth ... policy_rate unemployment
year

area ...
USA 20.5 1.00 2.1 ... 5.25 3.8
2024
Eurozone 18.0 1.09 1.3 ... 4.00 6.5
2024
Japan 15.0 143.50 0.7 ... -0.10 2.6
2024
UK 12.5 0.79 1.5 ... 5.00 4.2
2024
Canada 10.0 1.36 1.8 ... 4.75 5.1
2024
Australia 22.0 1.51 2.0 ... 4.35 4.0
2024

[6 rows x 8 columns]

Pandas supports a wide range of methods for merging different datasets. These are described
extensively in the documentation. Here we just give a few examples.

Method Function Description Key Parameters Use Case

Inner Join pd.merge(df1,
df2,
how='inner')

Returns only rows
with matching keys
in both dataframes

on, left_on, right_on When you
only want
records that
exist in both
datasets

Left Join pd.merge(df1,
df2,
how='left')

Returns all rows
from left
dataframe,
matching rows
from right

on, left_on, right_on Keep all
records from
primary
dataset, add
matching info

Right
Join

pd.merge(df1,
df2,
how='right')

Returns all rows
from right
dataframe,
matching rows
from left

on, left_on, right_on Keep all
records from
secondary
dataset

Outer
Join

pd.merge(df1,
df2,
how='outer')

Returns all rows
from both
dataframes

on, left_on, right_on When you
want all
records from
both datasets
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Method Function Description Key Parameters Use Case

Cross
Join

pd.merge(df1,
df2,
how='cross')

Cartesian product
of both dataframes

None required Create all
possible
combinations

Concat
Vertical

pd.concat([df1,
df2])

Stacks dataframes
vertically (rows)

axis=0, ignore_index Combine
datasets with
same columns

Concat
Horizon-
tal

pd.concat([df1,
df2],
axis=1)

Joins dataframes
horizontally
(columns)

axis=1, join Combine
datasets with
same index

Join
Method

df1.join(df2) Left join based on
index

how, lsuffix, rsuffix Quick join on
index when
columns don’t
overlap

df_trade = pd.DataFrame({
"area": ["USA", "Eurozone", "Japan", "China", "India", "Brazil"],
"exports_bn": [1650, 2200, 705, 3360, 323, 281],
"imports_bn": [2407, 2000, 641, 2601, 507, 219],
"trade_balance": [-757, 200, 64, 759, -184, 62]

}).set_index("area")
df_trade

exports_bn imports_bn trade_balance
area
USA 1650 2407 -757
Eurozone 2200 2000 200
Japan 705 641 64
China 3360 2601 759
India 323 507 -184
Brazil 281 219 62

inner_result = pd.merge(df, df_trade, how='inner', left_index=True,
right_index=True)↪

inner_result

year gdp_per_capita ... imports_bn trade_balance
area ...
USA 2024 60000.0 ... 2407 -757
Eurozone 2024 NaN ... 2000 200
Japan 2024 40000.0 ... 641 64
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[3 rows x 11 columns]

left_result = pd.merge(df, df_trade, how='left', left_index=True,
right_index=True)↪

left_result

year gdp_per_capita ... imports_bn trade_balance
area ...
USA 2024 60000.0 ... 2407.0 -757.0
Eurozone 2024 NaN ... 2000.0 200.0
Japan 2024 40000.0 ... 641.0 64.0
UK 2024 NaN ... NaN NaN
Canada 2024 55000.0 ... NaN NaN
Australia 2024 70000.0 ... NaN NaN

[6 rows x 11 columns]

right_result = pd.merge(df, df_trade, how='right', left_index=True,
right_index=True)↪

right_result

year gdp_per_capita ... imports_bn trade_balance
area ...
USA 2024.0 60000.0 ... 2407 -757
Eurozone 2024.0 NaN ... 2000 200
Japan 2024.0 40000.0 ... 641 64
China NaN NaN ... 2601 759
India NaN NaN ... 507 -184
Brazil NaN NaN ... 219 62

[6 rows x 11 columns]

outer_result = pd.merge(df, df_trade, how='outer', left_index=True,
right_index=True)↪

outer_result

year gdp_per_capita ... imports_bn trade_balance
area ...
Australia 2024.0 70000.0 ... NaN NaN
Brazil NaN NaN ... 219.0 62.0
Canada 2024.0 55000.0 ... NaN NaN
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China NaN NaN ... 2601.0 759.0
Eurozone 2024.0 NaN ... 2000.0 200.0
India NaN NaN ... 507.0 -184.0
Japan 2024.0 40000.0 ... 641.0 64.0
UK 2024.0 NaN ... NaN NaN
USA 2024.0 60000.0 ... 2407.0 -757.0

[9 rows x 11 columns]

pd.concat([df, df_trade], axis=1).sort_index() # Concatenate along columns

year gdp_per_capita ... imports_bn trade_balance
area ...
Australia 2024.0 70000.0 ... NaN NaN
Brazil NaN NaN ... 219.0 62.0
Canada 2024.0 55000.0 ... NaN NaN
China NaN NaN ... 2601.0 759.0
Eurozone 2024.0 NaN ... 2000.0 200.0
India NaN NaN ... 507.0 -184.0
Japan 2024.0 40000.0 ... 641.0 64.0
UK 2024.0 NaN ... NaN NaN
USA 2024.0 60000.0 ... 2407.0 -757.0

[9 rows x 11 columns]

pd.concat([df, df_trade], axis=0) # Concatenate along rows

year gdp_per_capita ... imports_bn trade_balance
area ...
USA 2024.0 60000.0 ... NaN NaN
Eurozone 2024.0 NaN ... NaN NaN
Japan 2024.0 40000.0 ... NaN NaN
UK 2024.0 NaN ... NaN NaN
Canada 2024.0 55000.0 ... NaN NaN
Australia 2024.0 70000.0 ... NaN NaN
USA NaN NaN ... 2407.0 -757.0
Eurozone NaN NaN ... 2000.0 200.0
Japan NaN NaN ... 641.0 64.0
China NaN NaN ... 2601.0 759.0
India NaN NaN ... 507.0 -184.0
Brazil NaN NaN ... 219.0 62.0

[12 rows x 11 columns]
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Sometimes it can be useful to apply a function to all values of a column/row. For instance, we
might be interested in normalised inflation. We can do this using the apply() method. This
method applies a function to each element in the Series or DataFrame.

df.inflation.apply(lambda x: (x - df.inflation.mean()) / df.inflation.std())
# Standardize the inflation column↪

area
USA 1.082018
Eurozone 0.154574
Japan -1.832806
UK 0.552050
Canada -0.242902
Australia 0.287066
Name: inflation, dtype: float64

Sometimes it is necessary to rename columns or indices in a DataFrame. There are several
ways to do this, depending on whether you want to rename all columns, specific columns, or
apply a function to transform the names.

Method Syntax Use Case Example

Direct
Assignment

df.columns =
[list]

Replace all column
names at once

df.columns = ['A',
'B', 'C']

rename() with
Dictionary

df.rename(columns={dict})Rename specific columns
selectively

df.rename(columns={'old':
'new'})

rename() with
inplace

df.rename(columns={dict},
inplace=True)

Modify original
DataFrame directly

df.rename(columns={'old':
'new'},
inplace=True)

rename() with
Function

df.rename(columns=function)Apply transformation to
all columns

df.rename(columns=str.upper)

String Methods df.columns.str.method()Apply string operations
to column names

df.columns =
df.columns.str.replace('_',
' ')

Lambda
Function

df.rename(columns=lambda
x: expression)

Custom transformations
on column names

df.rename(columns=lambda
x:
x.replace('old',
'new'))

Key Parameters
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Parameter Description Default Example

columns Dictionary or function for
column mapping

None {'old_name':
'new_name'}

inplace Modify DataFrame in
place vs. return copy

False inplace=True

errors How to handle missing
keys

'ignore' errors='raise'

df1 = df.copy() # Create a copy of the DataFrame

df1 = df1.rename(columns={
"gdp_growth": "gdp_growth_(%)",
"gdp_per_capita": "gdp_per_capita_($)",
"inflation": "inflation_rate_(%)",
"policy_rate": "policy_rate_(%)",
"unemployment": "unemployment_rate_(%)",
"fx_usd": "fx_rate_($/X)",
"avg_weather": "avg_weather_(°C)",
}) # Rename columns

df1

year gdp_per_capita_($) ... fx_rate_($/X) avg_weather_(°C)
area ...
USA 2024 60000.0 ... 1.00 20.5
Eurozone 2024 NaN ... 1.09 18.0
Japan 2024 40000.0 ... 143.50 15.0
UK 2024 NaN ... 0.79 12.5
Canada 2024 55000.0 ... 1.36 10.0
Australia 2024 70000.0 ... 1.51 22.0

[6 rows x 8 columns]

We can also work directly with column names

df1.columns = df.columns.str.replace('_', ' ')
df1

year gdp per capita gdp growth ... unemployment fx usd avg
weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
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Eurozone 2024 NaN 1.3 ... 6.5 1.09
18.0
Japan 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
Canada 2024 55000.0 1.8 ... 5.1 1.36
10.0
Australia 2024 70000.0 2.0 ... 4.0 1.51
22.0

[6 rows x 8 columns]

or the row names

# Capitalize the first letter of each area name
df1.index = df.index.str.upper() # Convert all area names to uppercase
df1.columns = df.columns.str.capitalize() # Capitalize the first letter of

each column name↪

df1

Year Gdp_per_capita Gdp_growth ... Unemployment Fx_usd
Avg_weather

area ...
USA 2024 60000.0 2.1 ... 3.8 1.00
20.5
EUROZONE 2024 NaN 1.3 ... 6.5 1.09
18.0
JAPAN 2024 40000.0 0.7 ... 2.6 143.50
15.0
UK 2024 NaN 1.5 ... 4.2 0.79
12.5
CANADA 2024 55000.0 1.8 ... 5.1 1.36
10.0
AUSTRALIA 2024 70000.0 2.0 ... 4.0 1.51
22.0

[6 rows x 8 columns]

2.6.2.3 Data Visualization with Pandas

DataFrames have all kinds of useful plotting built in. Note that by default matplotlib is used
as the backend for plotting in Pandas. However, Pandas imports matplotlib for you in the
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background and you don’t have to do it yourself.

You can create various types of plots directly from DataFrames and Series using the plot()
method. Here are some examples:

df.gdp_growth.plot(
kind='line',
title='GDP Growth by Area',
ylabel=r'$ \Delta y$ (%)',
xlabel='Area',
grid=True,
figsize=(10, 5),
legend=True,
color='green',
marker='o',
linestyle='--'

)

<Axes: title={'center': 'GDP Growth by Area'}, xlabel='Area', ylabel='$
\\Delta y$ (%)'>
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df.inflation.plot(
kind='bar',
title='Inflation Rate by Area',
ylabel='Inflation Rate (%)',
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xlabel='Area',
color="orange",
grid=False,
figsize=(10, 5),
legend=False,
edgecolor='black',
linewidth=1.5

)

<Axes: title={'center': 'Inflation Rate by Area'}, xlabel='Area',
ylabel='Inflation Rate (%)'>
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df.plot(
kind="scatter",
x="gdp_growth",
y="gdp_per_capita",
title="GDP Growth vs GDP per Capita",
xlabel="GDP Growth (%)",
ylabel="GDP per Capita ($)",
grid=True,
figsize=(10, 5),
color="blue",
marker="x",
s=100, # Size of the markers
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alpha=0.7, # Transparency of the markers
linewidth=1.5 # Edge width of the markers

)

<Axes: title={'center': 'GDP Growth vs GDP per Capita'}, xlabel='GDP Growth
(%)', ylabel='GDP per Capita ($)'>
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2.6.2.4 Importing and Exporting Data

We have seen how to create DataFrames from scratch. However, in practice, we often need to
load data from external files or databases. Pandas provides a variety of functions to read and
write data in different formats. Data can be imported from CSV, Excel, and more. To read a
CSV file into a DataFrame, you can use the pd.read_csv() function.

file_csv ='./data.csv'
data = pd.read_csv(file_csv)

To read an Excel file, you can use the pd.read_excel() function.

file_excel = './data.xlsx'
data = pd.read_excel(file_excel, sheet_name='Sheet1')

To write a DataFrame to a CSV file, you can use the to_csv() method.
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df.to_csv('output.csv', index=False)

To write a DataFrame to an Excel file, you can use the to_excel() method.

df.to_excel('output.xlsx', sheet_name='Sheet1', index=False)

We will cover these and other data I/O methods in more detail in later sections of the course.

2.6.2.5 Grouping and Aggregating Data

One of the most powerful features of Pandas is the ability to group data by one or more columns
and then apply aggregate functions to each group. This is done using the groupby() method,
which splits the data into groups based on some criteria, applies a function to each group, and
then combines the results.

# Create a sample DataFrame with multiple years
df_multi_year = pd.DataFrame({

"area": ["USA", "USA", "Eurozone", "Eurozone", "Japan", "Japan"],
"year": [2023, 2024, 2023, 2024, 2023, 2024],
"gdp_growth": [2.5, 2.1, 0.9, 1.3, 1.2, 0.7],
"inflation": [4.1, 3.2, 5.4, 2.5, 3.3, 1.0]

})
df_multi_year

area year gdp_growth inflation
0 USA 2023 2.5 4.1
1 USA 2024 2.1 3.2
2 Eurozone 2023 0.9 5.4
3 Eurozone 2024 1.3 2.5
4 Japan 2023 1.2 3.3
5 Japan 2024 0.7 1.0

To calculate the average GDP growth and inflation for each area across all years:

df_multi_year.groupby("area").mean()

year gdp_growth inflation
area
Eurozone 2023.5 1.10 3.95
Japan 2023.5 0.95 2.15
USA 2023.5 2.30 3.65
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You can also apply multiple aggregation functions at once using agg():

df_multi_year.groupby("area").agg({
"gdp_growth": ["mean", "std"],
"inflation": ["min", "max"]

})

gdp_growth inflation
mean std min max

area
Eurozone 1.10 0.282843 2.5 5.4
Japan 0.95 0.353553 1.0 3.3
USA 2.30 0.282843 3.2 4.1

Grouping by multiple columns is also possible:

# Group by both area and whether gdp_growth is above 1%
df_multi_year["high_growth"] = df_multi_year["gdp_growth"] > 1.0
df_multi_year.groupby(["area", "high_growth"])["inflation"].mean()

area high_growth
Eurozone False 5.40

True 2.50
Japan False 1.00

True 3.30
USA True 3.65
Name: inflation, dtype: float64

The groupby() method is essential for data analysis tasks like computing summary statistics
by category, creating pivot tables, and preparing data for visualization.

LIGHTBULB Scaling Beyond Pandas: PySpark

While Pandas excels at handling data that fits in memory, real-world big data applications
often involve datasets too large for a single machine. PySpark is the Python API for
Apache Spark, a distributed computing framework that can process massive datasets
across clusters of computers. PySpark DataFrames offer a similar interface to Pandas but
distribute computations across many machines. For the purposes of this course, we will
focus on Pandas, but it’s worth noting that many concepts learned here can be transferred
to PySpark when working with big data.
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2.6.3 Visualization: Matplotlib & Seaborn

Matplotlib is Python’s primary library for creating static, animated, and interactive visualiza-
tions.

The library is built around two core components:

Figure: The top-level container that holds all plot elements. A figure can contain one or more
axes.

Axes: The plotting area where data is displayed. Each axes object includes an x-axis and
y-axis (plus z-axis for 3D plots) and provides methods for plotting data points.

Figure 2.7: Matplotlib Figure and Axes (Source: matplotlib.org)

INFO Note

Documentation for these packages is available at https://matplotlib.org/stable/ and
https://seaborn.pydata.org/api.html.

We can import Matplotlib as follows

129



import matplotlib.pyplot as plt

Seaborn is built on top of Matplotlib and provides a high-level interface for drawing attractive
and informative statistical graphics. We can import Seaborn as follows

import seaborn as sns

For some examples, we won’t need seaborn, but we are importing it here because it has some
built-in datasets that we can use for visualization. Let’s load one of these datasets:

# Load the 'tips' dataset from seaborn
df = sns.load_dataset('tips')
df.head()

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

We have loaded a dataset that contains information about tips received by waitstaff in a
restaurant, including total bill amount, tip amount, gender of the payer, whether they are a
smoker, day of the week, time of day, and size of the party.

We have already seen how to create simple plots using Pandas. For example, we can create
a scatter plot of total bill vs. tip using Pandas’ built-in plotting capabilities (which uses
Matplotlib under the hood)

df.plot.scatter(x='total_bill', y='tip', title='Total Bill vs Tip',
xlabel='Total Bill', ylabel='Tip Amount')↪

<Axes: title={'center': 'Total Bill vs Tip'}, xlabel='Total Bill',
ylabel='Tip Amount'>

plt.show()
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Oftentimes, this is enough for making a quick plot. We can use Matplotlib directly

plt.figure(figsize=(8, 6))

<Figure size 800x600 with 0 Axes>

plt.scatter(df['total_bill'], df['tip'], color='blue')

<matplotlib.collections.PathCollection object at 0x16e33fc50>

plt.title('Total Bill vs Tip')

Text(0.5, 1.0, 'Total Bill vs Tip')

plt.xlabel('Total Bill')

Text(0.5, 0, 'Total Bill')

plt.ylabel('Tip Amount')

Text(0, 0.5, 'Tip Amount')
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plt.grid(True)
plt.show()
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To save a figure to a file, use plt.savefig('filename.png'). You can specify different
formats (e.g., .pdf, .svg, .jpg) and adjust the resolution with the dpi parameter (e.g.,
plt.savefig('figure.png', dpi=300)). In Jupyter notebooks, call savefig() before
plt.show(), as show() may clear the figure.

Suppose we want to create a scatter plot that distinguishes between smokers and non-smokers
using different colors. We can do this by creating two separate scatter plots and adding them
to the same axes

plt.figure(figsize=(8, 6))

<Figure size 800x600 with 0 Axes>
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smokers = df[df['smoker'] == 'Yes']
non_smokers = df[df['smoker'] == 'No']

plt.scatter(smokers['total_bill'], smokers['tip'], color='red',
label='Smokers')↪

<matplotlib.collections.PathCollection object at 0x16e3e0e10>

plt.scatter(non_smokers['total_bill'], non_smokers['tip'], color='blue',
label='Non-Smokers')↪

<matplotlib.collections.PathCollection object at 0x16e36c190>

plt.title('Total Bill vs Tip by Smoking Status')

Text(0.5, 1.0, 'Total Bill vs Tip by Smoking Status')

plt.xlabel('Total Bill')

Text(0.5, 0, 'Total Bill')

plt.ylabel('Tip Amount')

Text(0, 0.5, 'Tip Amount')

plt.legend()

<matplotlib.legend.Legend object at 0x16e36c7d0>

plt.grid(True)
plt.show()
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We can also create multiple subplots within a single figure using Matplotlib’s subplots
function

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
axes[0].scatter(smokers['total_bill'], smokers['tip'], color='red')

<matplotlib.collections.PathCollection object at 0x16e3282d0>

axes[0].set_title('Smokers')

Text(0.5, 1.0, 'Smokers')

axes[0].set_xlabel('Total Bill')

Text(0.5, 0, 'Total Bill')
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axes[0].set_ylabel('Tip Amount')

Text(0, 0.5, 'Tip Amount')

axes[1].scatter(non_smokers['total_bill'], non_smokers['tip'], color='blue')

<matplotlib.collections.PathCollection object at 0x16e328410>

axes[1].set_title('Non-Smokers')

Text(0.5, 1.0, 'Non-Smokers')

axes[1].set_xlabel('Total Bill')

Text(0.5, 0, 'Total Bill')

axes[1].set_ylabel('Tip Amount')

Text(0, 0.5, 'Tip Amount')

plt.suptitle('Total Bill vs Tip by Smoking Status')

Text(0.5, 0.98, 'Total Bill vs Tip by Smoking Status')

plt.show()
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Seaborn provides a higher-level interface for creating attractive and informative statistical
graphics. For example, we can create scatter plots distinguishing between different categories
using the relplot function

sns.relplot(data=df, x="total_bill", y="tip", hue="time", col="day",
col_wrap=2)↪

<seaborn.axisgrid.FacetGrid object at 0x16e25cec0>
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where each subplot corresponds to a different day of the week, and points are colored based on
whether the meal was lunch or dinner. We could have created the same plot using Matplotlib,
but it would have required more code.
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We can also create other types of plots using Seaborn, such as box plots to visualize the
distribution of tips by day of the week

sns.boxplot(x='day', y='tip', data=df)

<Axes: xlabel='day', ylabel='tip'>

plt.title('Tip Distribution by Day of the Week')

Text(0.5, 1.0, 'Tip Distribution by Day of the Week')

plt.show()
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As you can see, on Saturdays there are some very high tips compared to other days but the
median tip on Fridays and Sundays still seems to be higher.

We can also create histograms to visualize the distribution of total bills

sns.histplot(df['total_bill'], bins=20, kde=True)

<Axes: xlabel='total_bill', ylabel='Count'>
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plt.title('Distribution of Total Bills')

Text(0.5, 1.0, 'Distribution of Total Bills')

plt.xlabel('Total Bill')

Text(0.5, 0, 'Total Bill')

plt.ylabel('Frequency')

Text(0, 0.5, 'Frequency')

plt.show()
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where the kde=True argument adds a kernel density estimate to the histogram, providing a
smoothed curve that represents the distribution of total bills.

We can also create regression plots to visualize the relationship between total bill and tip
amount
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sns.lmplot(x='total_bill', y='tip', data=df, hue='smoker', markers=['o',
'x'])↪

<seaborn.axisgrid.FacetGrid object at 0x16c8e1a90>

plt.title('Total Bill vs Tip with Regression Lines')

Text(0.5, 1.0, 'Total Bill vs Tip with Regression Lines')

plt.show()
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which includes regression lines for smokers and non-smokers.

There are many more types of plots and customization options available in both Matplotlib and
Seaborn. These libraries are powerful tools for data visualization in Python, and mastering them
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will greatly enhance your ability to communicate insights from data effectively. I recommend
exploring their documentation and experimenting with different types of plots to become more
familiar with their capabilities.

2.7 Working with Application Programming Interfaces (APIs)

Application Programming Interfaces (APIs) are a set of rules and protocols that allow different
software applications to communicate with each other. They enable developers to access data
and functionality from external services, libraries, or platforms without needing to understand
the underlying code or infrastructure. Rather than downloading data files manually, APIs
allow us to programmatically request and retrieve data directly from a web service.

In this section, we will have a brief look at how to use some common APIs for economic data
retrieval using Python. We will cover the following:

• Banco de España’s Statistics Web Service
• ECB Data Portal
• Fred API by the Federal Reserve Bank of St. Louis

These APIs provide access to a wide range of economic and financial data, including interest
rates, exchange rates, inflation rates, GDP figures, and more. By using these APIs, we can
automate the process of data retrieval, ensuring that we always have access to the most up-to-
date information for our analyses. I highly recommend that you make use of APIs whenever
possible to streamline your data collection process.

2.7.1 Banco de España’s Statistics Web Service

Banco de España’s Statistics Web Service provides a way to programmatically retrieve data
from the Banco de España’s databases including data from BIEST. Since Banco de España does
not provide an official Python package to access their API, we can use the requests library to
make HTTP requests and retrieve data in JSON (JavaScript Object Notation) format. We can
then parse the JSON data and convert it into a Pandas DataFrame for further analysis.

To this end, we first import the necessary libraries

import requests
import pandas as pd

Next, we define a class to interact with the Banco de España API1

1Note that creating the class is not strictly necessary, but it helps to organize the code.
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class BancoDeEspanaAPI:
def __init__(self, language='en'):
self.language = language

def request(self, url):
response = requests.get(url)
return response.json()

def get_series(self, series, time_range='MAX'):

# Prepare the series parameter
if isinstance(series, list):

series_list = ','.join(series)
else:

series_list = series

# Download the data for the specified series
url = f"https://app.bde.es/bierest/resources/srdatosapp/listaSeries?id ⌋

ioma={self.language}&series={series_list}&rango={time_range}"↪

json_response = self.request(url)

# Initialize an empty dataframe to store the results
df = pd.DataFrame()

# Go over each series in the response and extract the data
for series_data in json_response:

# Extract series name, dates, and values
series_name = series_data['serie']
dates = series_data['fechas']
values = series_data['valores']

# Add the data to the dataframe
df[series_name] = pd.Series(data=values,

index=pd.to_datetime(dates).date)↪

# Sort the dataframe by index (date)
df = df.sort_index()

return df

We can then create an instance of the BancoDeEspanaAPI class and use its methods to retrieve
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data. For example, to get the latest data for a specific series, we can use the get_series()
method

bde = BancoDeEspanaAPI()
df = bde.get_series(['DTNPDE2010_P0000P_PS_APU',

'DTNSEC2010_S0000P_APU_SUMAMOVIL'])↪

Now, the requested series are in the DataFrame df and we can manipulate or analyze them as
needed. For example, we can display the retrieved data

df.tail()

DTNPDE2010_P0000P_PS_APU DTNSEC2010_S0000P_APU_SUMAMOVIL
2024-07-01 104.2 -2.8
2024-10-01 101.6 -3.2
2025-01-01 103.4 -3.2
2025-04-01 103.5 -3.2
2025-07-01 103.2 -2.9

or plot it

df.plot()

<Axes: >
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This is a very basic implementation of how to interact with the Banco de España API using
Python. You can extend this class to include more functionality, such as handling different data
formats, error handling, and more advanced data processing as needed. To get the series keys
for the data you want to retrieve, you can use the BIEST tool provided by Banco de España.

2.7.2 ECB Data Portal & Other SDMX APIs

The ECB Data Portal provides access to a wide range of economic and financial data from
the European Central Bank. Similar to Banco de España, the ECB does not provide an
official Python package for their API. However, the ECB follows the SDMX standard for data
exchange, which allows us to retrieve data in a structured format. We can use the sdmx library
in Python to interact with the ECB API and retrieve data.

First, we import the necessary libraries

import sdmx
import pandas as pd

Then, we initialize a connection to the ECB API

ecb = sdmx.Client("ECB")
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Suppose we want to retrieve the HICP inflation rate for Spain from January 2019 to June 2019.
This series has the following key: ICP.M.ES.N.000000.4.ANR.

To download it we need to specify the appropriate parameters and make a request to the ECB
API

key = 'M.ES.N.000000.4.ANR' # Need key without the 'ICP.' prefix
params = dict(startPeriod="2019-01", endPeriod="2019-06") # This is optional
data = ecb.data("ICP", key=key, params=params).data[0] # ICP prefix needs to

be specified here↪

df = sdmx.to_pandas(data).to_frame()

Now, the requested data is in the DataFrame df and we can manipulate or analyze it as needed.
For example, we can display the retrieved data

df.tail()

value
FREQ REF_AREA ADJUSTMENT ICP_ITEM STS_INSTITUTION ICP_SUFFIX TIME_PERIOD
M ES N 000000 4 ANR 2019-02
1.1

2019-03
1.3
2019-04
1.6
2019-05
0.9
2019-06
0.6

Note that this is a multi-index DataFrame. We can reset the index to make it easier to work
with

df = df.reset_index()
df = df.set_index('TIME_PERIOD')
df = df.loc[:, ['value']]
df = df.rename(columns={'value': 'inflation_rate'})

We can plot the data as usual
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df.plot()

<Axes: xlabel='TIME_PERIOD'>

2019-01 2019-02 2019-03 2019-04 2019-05 2019-06
TIME_PERIOD
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1.0

1.2

1.4

1.6 inflation_rate

These are just basic examples of how to interact with the ECB API using Python. The sdmx
library supports many more features.

LIGHTBULB Other SDMX Data Providers

The SDMX standard is used by various international organizations for data exchange.
Some other notable SDMX APIs include:

• Eurostat
• Bank for International Settlements (BIS)
• International Monetary Fund (IMF)
• OECD

You can find a list of SDMX data providers implemented in the sdmx package here. To use
them in the code above you simply need to replace 'ECB' with the appropriate provider
name.
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2.7.3 Fred API

The Fred API by the Federal Reserve Bank of St. Louis provides access to a vast amount of
economic data, including interest rates, inflation rates, GDP figures, and more. To use the
Fred API, we need to sign up for an API key on the Fred website. Once we have the API key,
we can use the pyfredapi library in Python to interact with the Fred API and retrieve data.

The Fred API works a little differently from the previous two APIs we have seen since it
requires an API key for authentication. You can sign up for a free API key on the Fred website.
Note that these keys are personal and should not be shared publicly. For this reason, the key
is not included directly in the code examples below. Instead, you should follow the instructions
in the pyfredapi documentation to set up your API key securely.

Once we have set the API key, we import the necessary libraries

import pyfredapi as pf

Then, we can download the series for GDP (series ID: GDP) as follows

df = pf.get_series('GDP') # Note that you can provide the API key manually by
adding the parameter api_key='YOUR_API_KEY' if you have not set it up as
an environment variable

↪

↪

We can then display the retrieved data

df.tail()

realtime_start realtime_end date value
314 2025-12-23 2025-12-23 2024-07-01 29511.664
315 2025-12-23 2025-12-23 2024-10-01 29825.182
316 2025-12-23 2025-12-23 2025-01-01 30042.113
317 2025-12-23 2025-12-23 2025-04-01 30485.729
318 2025-12-23 2025-12-23 2025-07-01 31095.089

Cleaning up the DataFrame a bit

df = df.rename(columns={'value': 'gdp'}) # Rename the 'value' column to 'gdp'
df['date'] = pd.to_datetime(df['date']) # Convert the 'date' column to

datetime format↪

df = df.set_index('date') # Set the 'date' column as the index
df = df.loc[:, ['gdp']] # Keep only the 'gdp' column
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Now it looks better

df.tail()

gdp
date
2024-07-01 29511.664
2024-10-01 29825.182
2025-01-01 30042.113
2025-04-01 30485.729
2025-07-01 31095.089

and to plot it, we can simply do

df.plot()

<Axes: xlabel='date'>
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To see all the functionality provided by the pyfredapi library, please refer to the official
documentation.
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2.8 Good Practices

As you develop your Python programming skills, adopting good practices early will save
you countless hours of frustration and make your code more maintainable, reproducible, and
professional. This section covers essential practices that every Python programmer should
follow, with particular emphasis on version control and virtual environments—two foundational
tools that are often overlooked by beginners but are indispensable in professional settings. Due
to their importance, we will briefly cover them here. However, we do not have the time to go
into great detail in this course. Therefore, I encourage you to explore these topics further on
your own.

2.8.1 Version Control with Git

Version control is perhaps the single most important practice for any programmer. It allows
you to track changes to your code over time, collaborate with others, recover from mistakes,
and maintain a complete history of your project’s evolution. Git is the dominant version control
system used in both academia and industry, and GitHub is the most popular platform for
hosting Git repositories.

Think of Git as a sophisticated “undo” system for your entire project. Every time you make a
commit, you create a snapshot of your project that you can return to at any time. This means
you can experiment fearlessly—if your new approach doesn’t work, you can simply revert to a
previous state. Beyond this safety net, Git enables powerful collaboration workflows: multiple
people can work on the same codebase simultaneously, with Git helping to merge their changes
intelligently.

For academic research and data science projects, version control is equally crucial. It provides
a complete audit trail of your analysis, which is essential for reproducibility. When someone
asks about a result from six months ago, you can check out the exact code that produced it.
When you discover an error, you can trace back to when it was introduced.

To get started with Git for your Python projects, you’ll want to follow a basic workflow. First,
initialize a Git repository in your project folder using git init. As you work, periodically stage
your changes with git add and commit them with meaningful messages using git commit -m
"Description of changes". Push your commits to a remote repository on GitHub to back
up your work and enable collaboration. A typical Git workflow looks like this:

# Initialize a new Git repository
git init

# Add files to staging area
git add script.py
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# Commit changes with a descriptive message
git commit -m "Add data preprocessing function"

# Push to GitHub (after setting up remote)
git push origin main

These commands are meant to be run in your terminal or command prompt within your project
directory. There are many graphical user interfaces (GUIs) and IDE integrations (like in
VSCode) that can simplify these tasks if you prefer not to use the command line.

Some best practices for using Git include committing frequently with small, logical changes
rather than massive commits that touch many files; writing clear commit messages that explain
why you made the change, not just what changed; and using a .gitignore file to exclude
data files, output files, and environment-specific files from version control. You should version
control your code and configuration files, but avoid committing large datasets, model weights,
or generated outputs—these should be stored separately or regenerated from your code.

Many cloud platforms like GitHub offer additional features beyond basic version control. Issues
help track bugs and feature requests, pull requests facilitate code review before merging changes,
and GitHub Actions can automate testing and deployment.

2.8.2 Virtual Environments and Package Management

Virtual environments are isolated Python installations that allow you to maintain different sets
of packages for different projects. This solves a critical problem: different projects often require
different versions of the same library. Without virtual environments, you’d be forced to use a
single global installation of each package, which can lead to version conflicts and “it works on
my machine” problems.

Consider a practical scenario: you’re working on an older data analysis project that requires
NumPy 1.20, but a new machine learning project needs NumPy 1.24 for compatibility with
the latest PyTorch. Without virtual environments, you’d have to constantly uninstall and
reinstall NumPy depending on which project you’re working on. Virtual environments solve
this elegantly by creating separate Python installations for each project, each with its own
package versions.

Beyond avoiding conflicts, virtual environments make your projects reproducible. When you
share your code with others or run it on a different machine, you need a way to specify exactly
which package versions it requires. By creating an environment file (like environment.yml for
conda or requirements.txt for pip), you provide a recipe that others can use to recreate your
exact setup. This is essential for reproducible research and collaborative projects.
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There are several different tools for managing virtual environments in Python. Two commonly
used ones are conda and venv. Conda, which comes with Anaconda and Miniconda, is
particularly popular in data science because it can manage both Python packages and system-
level dependencies. It’s especially useful when you need packages that require compiled code,
like NumPy or PyTorch. The built-in venv module creates lighter-weight environments but
only manages Python packages, requiring you to handle system dependencies separately.

In this course, we used conda to manage virtual environments. To create a virtual environment
for a project, you would use:

# Create a new environment named 'myproject' with Python 3.11
conda create -n myproject python=3.11

# Activate the environment
conda activate myproject

# Install packages in the activated environment
conda install numpy pandas matplotlib

# Export environment to a file for reproducibility
conda env export > environment.yml

# Create environment from file on another machine
conda env create -f environment.yml

Once you’ve activated an environment, any packages you install or Python scripts you run will
use that environment’s isolated installation. When you’re done working, you can deactivate it
with conda deactivate. This workflow keeps each project’s dependencies cleanly separated.

A good practice is to create a fresh virtual environment at the start of each new project and
document its dependencies in an environment.yml file. Keep this file in your Git repository
so others can recreate your setup. Update the file whenever you add new packages to your
project. When sharing your code, include instructions for setting up the environment—this is
often just a single command: conda env create -f environment.yml.

The combination of Git and virtual environments forms a foundation for reproducible compu-
tational work. Git tracks your code changes, while virtual environments ensure your code runs
consistently across different machines and over time. Together, they transform ad-hoc scripts
into professional, maintainable projects that you and others can build upon.

2.8.3 Code Organization and Documentation

Well-organized and documented code is easier to understand, maintain, and debug. As your
projects grow beyond simple scripts, good organization becomes essential. Break your code
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into logical functions and modules rather than writing everything in a single long script. Each
function should do one thing well and have a clear, descriptive name. Use docstrings to
document what each function does, what parameters it expects, and what it returns.

Python docstrings are enclosed in triple quotes and appear immediately after a function
definition. A good docstring explains the purpose of the function, describes parameters and
return values, and may include usage examples. Here’s a well-documented function:

def calculate_portfolio_return(weights, returns):
"""
Calculate the expected return of a portfolio.

Parameters
----------
weights : array-like

Portfolio weights for each asset (should sum to 1)
returns : array-like

Expected returns for each asset

Returns
-------
float

Expected portfolio return

Examples
--------
>>> weights = np.array([0.6, 0.4])
>>> returns = np.array([0.10, 0.15])
>>> calculate_portfolio_return(weights, returns)
0.12
"""
return np.dot(weights, returns)

For larger projects, organize your code into modules (separate .py files) grouped by functional-
ity. Use meaningful file and variable names—data_preprocessing.py is much clearer than
utils.py, and interest_rate is better than x. Follow the PEP 8 style guide for Python code,
which covers naming conventions, indentation, and other formatting guidelines.

2.8.4 Error Handling and Debugging

Errors are an inevitable part of programming. Learning to handle them gracefully and debug
effectively will make you a much more productive programmer. Python uses exceptions to
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signal errors. Rather than letting your program crash, you can catch exceptions and handle
them appropriately using try-except blocks:

try:
df = pd.read_csv('data.csv')

except FileNotFoundError:
print("Error: data.csv not found. Please check the file path.")
df = None

When debugging, you can use print statements strategically to understand what’s happening
in your code, use Python’s built-in debugger (pdb) or VSCode’s debugging features for more
complex issues. The VSCode debugger lets you set breakpoints, step through code line by line,
and inspect variable values—invaluable for tracking down subtle bugs.

Don’t be discouraged when you encounter errors. Reading error messages carefully is a crucial
skill—Python’s error messages usually tell you exactly what went wrong and where. The
traceback shows the sequence of function calls that led to the error, with the actual error at
the bottom. Learning to parse these messages will help you fix issues quickly.

2.8.5 Using AI Tools for Coding

Modern AI tools like GitHub Copilot and Claude Code can significantly accelerate your coding,
especially when you’re learning. These tools can help you write boilerplate code, explain
unfamiliar syntax, suggest solutions to common problems, and even debug errors. However,
use them thoughtfully—treat them as helpful assistants, not replacements for understanding.

When using AI coding assistants, always read and understand the suggested code before using
it. Don’t blindly copy-paste without comprehension. These tools can make mistakes or suggest
suboptimal solutions, so critical evaluation is essential. Use them to learn: if an AI suggests
an unfamiliar approach, research why it works and when it’s appropriate. Over time, you’ll
develop intuition for when AI suggestions are helpful versus when you need to think more
carefully about the problem.

AI tools are particularly useful for learning new libraries or APIs, generating test cases,
refactoring code, and getting past “blank page” syndrome when starting a new function.
They’re less reliable for complex algorithmic problems or domain-specific logic that requires
deep understanding. Like any tool, they become more valuable as you learn to use them
effectively.
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Part II

Supervised Learning
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Chapter 3

Basic Concepts in Supervised
Learning

We have seen in the previous chapter that supervised learning is a type of machine learning
where the model is trained on a labeled dataset, meaning that each input data point 𝑥 has a
corresponding output label 𝑦. The goal of supervised learning is to learn a mapping from
inputs to outputs that can be used to make predictions on new, unseen data. We can
distinguish between two main types of supervised learning tasks:

• Regression tasks, where the output variable 𝑦 is continuous (e.g., predicting house
prices, stock prices, etc.).

• Classification tasks, where the output variable 𝑦 is categorical (e.g., spam detection,
image recognition, etc.).

Depending on the type of task, different models and algorithms are used in supervised learning.
This section provides an overview of some common supervised learning models and the key
concepts involved in evaluating and improving their performance.

A key element of supervised learning is the training process, where the model learns from
the labeled data by adjusting its parameters to minimize a loss function. The loss function
quantifies the difference between the predicted outputs and the true labels, guiding the
model to improve its predictions over time. This process is typically done using optimization
algorithms such as gradient descent. In some special cases, closed-form solutions exist (e.g.,
linear regression), but in most cases, numerical optimization methods are required.
Furthermore, note that the loss function used for regression tasks is typically different from the
one used for classification tasks but the overall goal remains the same: to minimize the loss
and improve the model’s predictive accuracy.

We will start this section with placing two supervised learning models with which you are already
familiar, linear regression and logistic regression, in a machine-learning context. We
then have a brief look at another important supervised learning model, k-nearest neighbors.
Later, we will discuss how to evaluate regression and classification models and introduce
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the concepts of generalization and overfitting. Finally, we will implement some of these
concepts in Python.

3.1 Basic Supervised Learning Models

In this subsection, we will first quickly review linear regression and logistic regression
in a machine-learning context. Since you are already familiar with these methods, we will
use them to introduce some new concepts such as the decision boundary and feature
engineering. Then, we will briefly discuss the k-nearest neighbors algorithm, which is
a simple yet powerful supervised learning model that can be used for both regression and
classification tasks.

3.1.1 Linear Regression in a ML Context
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Figure 3.1: Linear Regression With a Single Feature 𝑥 (i.e., 𝑚 = 1) and Bias 𝑏 = 0 (Note that
this Plot is interactive in the HTML version)

You have already extensively studied linear regressions in courses of the program, so we will
not discuss it in much detail. In machine learning, it is common to talk about weights 𝑤𝑖 and
biases 𝑏𝑖 instead of coefficients 𝛽𝑖 and intercept 𝛽0, i.e., the linear regression model would be
written as

𝑦𝑛 = 𝑏 +
𝑚

∑
𝑖=1

𝑤𝑖𝑥𝑖,𝑛 + 𝜀𝑛 𝑛 = 1, … , 𝑁

where 𝑤𝑖 are the weights, 𝑏 is the bias and 𝑁 is the sample size. The weights and biases are
found by minimizing the empirical risk function or mean squared error (MSE) loss,
which is a measure of how well the model fits the data.
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MSE(𝑦, 𝑥; 𝑤, 𝑏) = 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦𝑛)2

where 𝑦𝑛 is the true value, ̂𝑦𝑛 is the predicted (or fitted) value for observation 𝑛.

In the case of linear regression, there is a closed-form solution for the weights and biases that
minimize the MSE. However, the weights and biases have to be found numerically in
many other machine learning models since there is no closed-form solution. One can
think of this, as the machine learning algorithm automatically moving a slider for the slope
Figure 3.1 until the loss is minimized (i.e., the red dot is at the lowest possible point) and the
model fits the data as well as possible.

3.1.2 Logistic Regression in a ML Context

Logistic regression is a widely used classification model 𝑝(𝑦|𝑥; 𝑤, 𝑏) where 𝑥 ∈ ℝ𝑚 is an input
vector, and 𝑦 ∈ {0, 1, … , 𝐶} is a class label. We will focus on the binary case, meaning that
𝑦 ∈ {0, 1} but it is also possible to extend this to more than two classes. The probability that
𝑦𝑛 is equal to 1 for observation 𝑛 is given by

𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏) = 1
1 + exp(−𝑏 − ∑𝑚

𝑖=1 𝑤𝑖𝑥𝑖,𝑛)

where 𝑤 = [𝑤1, … , 𝑤𝑚]′ ∈ ℝ𝑚 is a weight vector, and 𝑏 is a bias term. Combining the
probabilities for each observation 𝑛, we can write the likelihood function as

ℒ(𝑤, 𝑏) =
𝑁

∏
𝑛=1

𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏)𝑦𝑛 (1 − 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏))1−𝑦𝑛

or taking the natural logarithm of the likelihood function, we get the log-likelihood function

log ℒ(𝑤, 𝑏) =
𝑁

∑
𝑛=1

𝑦𝑛 log 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏) + (1 − 𝑦𝑛) log (1 − 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏)) .

To find the weights and biases, we need to numerically maximize the log-likelihood function (or
minimize − log ℒ(𝑤, 𝑏)).

Adding a classification threshold 𝑡 to a logistic regression yields a decision rule of the
form

̂𝑦 = 1 ⇔ 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) > 𝑡,

i.e., the model predicts that 𝑦 = 1 if 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) > 𝑡.
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Figure 3.2: Logistic Regression With a Single Feature 𝑥 (i.e., 𝑚 = 1) and Bias 𝑏 = 0 (Note
that this Plot is interactive in the HTML version)

Exclamation-Triangle Terminology: Regression vs. Classification

Do not get confused about the fact that it is called logistic regression but is used for
classification tasks. Logistic regression provides an estimate of the probability that 𝑦 = 1
for given 𝑥, i.e., an estimate for 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏). To turn, this into a classification model,
we also need a classification threshold value for 𝑝(𝑦 = 1|𝑥; 𝑤, 𝑏) above which we classify
an observation as 𝑦 = 1.

Figure 3.2 shows an interactive example of a logistic regression model. The left-hand side shows
the data points and the regression line. The right-hand side shows the log-likelihood function
with the red dot showing the value of the log-likelihood for the current value of 𝑤. The goal
is to find the weight 𝑤 in the regression line that maximizes the log-likelihood function (we
assumed 𝑏 = 0 for simplicity).

If you enable the classification threshold 𝑡, a data point is shown as dark blue if 𝑝(𝑦 =
1|𝑥; 𝑤, 𝑏) > 𝑡, otherwise, it is shown in light blue. Note how the value of the threshold affects
the classification of the data points for points in the middle. Essentially, for each classification
threshold, we have a different classification model. But how do we choose the classification
threshold? This is a topic that we will discuss in the next section.

Logistic regression belongs to the class of generalized linear models with logit as the link
function. We could write

log ( 𝑝
1 − 𝑝

) = 𝑏 +
𝑚

∑
𝑖=1

𝑤𝑖𝑥𝑖,𝑛
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where 𝑝 = 𝑝(𝑦𝑛 = 1|𝑥𝑛; 𝑤, 𝑏), which separates the linear part on the right-hand side from the
logit on the left-hand side.
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Figure 3.3: Decision Boundary - Logistic Regression with Features 𝑥1 and 𝑥2 (i.e., 𝑚 = 2)
(Note that this Plot is interactive in the HTML version)

This linearity also shows up in the linear decision boundary produced by a logistic regression
in Figure 3.3. A decision boundary shows how a machine-learning model separates different
classes in our data, i.e, how it would classify an arbitrary combination of (𝑥1, 𝑥2). This linearity
of the decision boundary can pose a problem if the two classes are not linearly separable as in
Figure 3.3. We can remedy this issue by including higher order terms for 𝑥1 and 𝑥2 such as 𝑥2

1
or 𝑥3

2, which is a type of feature engineering. However, there are many forms of non-linearity
that the decision boundary can have and we cannot try all of them. You might know the
following phrase from a Tolstoy book

“Happy families are all alike; every unhappy family is unhappy in its own way.”

In the context of non-linear functions, people sometimes say

“Linear functions are all alike; every non-linear function is non-linear in its own
way.”

During the course, we will learn more advanced machine-learning techniques that can produce
non-linear decision boundaries without the need for feature engineering.
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3.1.3 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a simple and intuitive method for classification
and regression. The KNN algorithm uses the 𝐾 nearest neighbors of a data point to make a
prediction. For example, in the case of a regression task, the prediction ̂𝑦 for a new data
point 𝑥 is

̂𝑦 = 1
𝐾

∑
𝑥𝑖∈𝑁𝑘(𝑥)

𝑦𝑖

i.e., the average of the 𝐾 nearest neighbors of 𝑥. In the case of a classification task, the
prediction ̂𝑦 is the majority class of the 𝐾 nearest neighbors of 𝑥.
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Figure 3.4: K-Nearest Neighbors Classification with 𝐾 = 5 (Classification shown as Shaded
Area)

Figure 3.4 shows an example of the K-Nearest Neighbors algorithm applied to the dataset that
was used for the logistic regression example in Figure 3.2. For each point in the feature space,
the KNN algorithm looks at the 𝐾 = 5 nearest neighbors and classifies the point based on the
majority class of these neighbors. Note that the color of the data point is the true value, while
the shaded area shows the classification made by the KNN algorithm.

The decision boundary is highly non-linear and can adapt to the shape of the data.
However, this flexibility comes at a cost. The KNN algorithm can be computationally expensive,
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especially for large datasets, since it needs to compute the distance between the new data point
and all other data points in the training set. Additionally, the KNN algorithm is sensitive to
the choice of 𝐾 and the distance metric used to compute the nearest neighbors.

In the example, above we used the Euclidean distance to compute the nearest neighbors.
The squared Euclidean distance between two points 𝑥 and 𝑦 in 𝑝-dimensional space is defined
as

𝑑(𝑥𝑖, 𝑥𝑗) =
𝑝

∑
𝑛=1

(𝑥𝑖𝑛 − 𝑥𝑗𝑛)2 = ‖𝑥𝑖 − 𝑥𝑗‖2

where 𝑥𝑖𝑛 and 𝑥𝑗𝑛 are the 𝑛-th feature of the 𝑖-th and 𝑗-th observation in our dataset,
respectively.

Note that the Euclidean distance can be used in both regression and classification problems
since it only applies to the features 𝑥 and not the target variable 𝑦. However, if the features
include categorical variables, we need to use a different distance metric that can accommodate
such variables.

3.2 Model Evaluation

Suppose our machine learning model has learned the weights and biases that minimize the loss
function. How do we know if the model is any good? In this section, we will discuss how
to evaluate regression and classification models.

3.2.1 Regression Models

In the case of regression models, we can use the mean squared error (MSE) as a measure
of how well the model fits the data. The MSE is defined as

MSE = 1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − ̂𝑦𝑛)2,

where 𝑦𝑛 is the true value, ̂𝑦𝑛 is the predicted value for observation 𝑛 and 𝑁 is the sample size.
A low MSE indicates a good fit, while a high MSE indicates a poor fit. In the ideal case, the
MSE is zero, meaning that the model perfectly fits the data. Related to the MSE is the root
mean squared error (RMSE), which is the square root of the MSE

RMSE =
√

MSE.
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The RMSE is in the same unit as the target variable 𝑦 and is easier to interpret than the
MSE.

Regression models are sometimes also evaluated based on the coefficient of determination
𝑅2. The 𝑅2 is defined as

𝑅2 = 1 −
∑𝑁

𝑛=1(𝑦𝑛 − ̂𝑦𝑛)2

∑𝑁
𝑛=1(𝑦𝑛 − ̄𝑦)2

,

where ̄𝑦 is the mean of the true values 𝑦𝑛. The 𝑅2 is a measure of how well the model fits the
data compared to a simple model that predicts the mean of the true values for all observations.
The 𝑅2 can take values between −∞ and 1. A value of 1 indicates a perfect fit, while a value
of 0 indicates that the model does not perform better than the simple model that predicts the
mean of the true values for all observations. Note that the 𝑅2 is a normalized version of the
MSE

𝑅2 = 1 − 𝑁 × MSE
∑𝑁

𝑛=1(𝑦𝑛 − ̄𝑦)2
.

Thus, we would rank models based on the 𝑅2 in the same way as we would rank them based
on the MSE or the RMSE.

There are many more metrics but at this stage, we will only look at one more: the mean-
absolute-error (MAE). The MAE is defined as

MAE = 1
𝑁

𝑁
∑
𝑛=1

|𝑦𝑛 − ̂𝑦𝑛|.

The MAE is the average of the absolute differences between the true values and the predicted
values. Note that the MAE does not penalize large errors as much as the MSE does.

3.2.2 Classification Models

In the case of classification models, we need different metrics to evaluate the performance of
the model. We will discuss some of the most common metrics in the following subsections.
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Basic Metrics

A key measure to evaluate a classification model, both binary and multiclass classification, is
to look at how often it predicts the correct class. This is called the accuracy of a model

Accuracy = Number of correct predictions
Total number of predictions

.

Related to this, one could also compute the misclassification rate

Misclassification Rate = Number of incorrect predictions
Total number of predictions

.

While these measures are probably the most intuitive measures to assess the performance of a
classification model, they can be misleading in some cases. For example, if we have a dataset
with 95% of the observations in class 1 and 5% in class 0, a model that always predicts 𝑦 = 1
(class 1) would have an accuracy of 95%. However, this model would not be very useful.

Confusion Matrices

In this and the following subsection, we focus on binary classification problems.

Let ̂𝑦 denote the predicted class and 𝑦 the true class. In a binary classification problem, we
can make two types of errors. First, we can make an error because we predicted ̂𝑦 = 1 when
𝑦 = 0, which is called a false positive (or a “false alarm”). Sometimes this is also called a
type I error. Second, we can make an error because we predicted ̂𝑦 = 0 when 𝑦 = 1, which is
called a false negative (or a “missed detection”). Sometimes this is referred to as a type
II error.

We can summarize the predictions of a classification model in a confusion matrix as seen in
Figure 3.5. The confusion matrix is a 2×2 matrix that shows the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) of a binary classification
model.

There is a tradeoff between the two types of errors. For example, you could get fewer false
negatives by predicting ̂𝑦 = 1 more often, but this would increase the number of false positives. In
the extreme case, if you only predict ̂𝑦 = 1 for all observations, you would have no false negatives
at all. However, you would also have no true negatives making the model of questionable
usefulness.

Exclamation-Triangle Confusion Matrix: Dependence on Classification Threshold 𝑡

The number of true positives, true negatives, false positives, and false negatives in the
confusion matrix depends on the classification threshold 𝑡.
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Figure 3.5: Confusion matrix

Note that we can compute the accuracy measure as a function of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN)

Accuracy = TP + TN
TP + TN + FP + FN

,

while the misclassification rate is given by

Misclassification Rate = FP + FN
TP + TN + FP + FN

.

Another useful measure that can be derived from the confusion matrix is the precision. It
measures the fraction of positive predictions that were actually correct, i.e.,

Precision = TP
TP + FP

The true positive rate (TPR) or recall or sensitivity measures the fraction of actual
positives that were correctly predicted, i.e.

Recall = TP
TP + FN

.

Analogously, true negative rate (TNR) or specificity measures the fraction of actual
negatives that were correctly predicted, i.e.,

TNR = TN
FP + TN
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Finally, the false positive rate (FPR) measures the fraction of actual negatives that were
incorrectly predicted to be positive, i.e.,

FPR = 1 − TNR = FP
FP + TN

Note that all of these measures can be computed for a given classification threshold 𝑡. They
capture different aspects of the quality of the predictions of a classification model.

INFO Multiclass Classification

In the case of multiclass classification, the confusion matrix is a 𝐾 × 𝐾 matrix, where 𝐾
is the number of classes. The diagonal elements of the confusion matrix represent the
number of correct predictions for each class, while the off-diagonal elements represent the
number of incorrect predictions.
Note that we can binarize multiclass classification problems, which allows us to use the
same metrics as in binary classification. Two such binarization schemes are

• One-vs-Rest (or One-vs-All): In this scheme, we train 𝐾 binary classifiers, one
for each class to distinguish it from all other classes. We can then use the class with
the highest score as the predicted class for a new observation.

• One-vs-One: In this scheme, we train 𝐾(𝐾 − 1)/2 binary classifiers, one for each
pair of classes. We can then use a majority vote to determine the class of a new
observation.

Receiver Operating Characteristic (ROC) Curves and Area Under the Curve
(AUC)

Figure 3.6 shows a Receiver Operating Characteristic (ROC) curve which is a graphical
representation of the tradeoff between the true positive rate (TPR) and the false positive rate
(FPR) for different classification thresholds. The ROC curve is a useful tool to visualize the
performance of a classification model. The diagonal line in the ROC curve represents a random
classifier. A classifier that is better than random will have a ROC curve above the diagonal
line. The closer the ROC curve is to the top-left corner, the better the classifier.

The Area Under the Curve (AUC) of the ROC curve is a measure to compare different
classification models. The AUC is a value between 0 and 1, where a value of 1 indicates a
perfect classifier and a value of 0.5 indicates a random classifier. Figure 3.7 shows the AUC of
a classifier as the shaded area under the ROC curve. Note that the AUC summarizes the ROC
curve, which itself represents the quality of predictions of our classification model at different
thresholds, in a single number.

164



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
o
si
ti
ve

R
a
te

Random Classifier (diag.) Good Classifier

Better Classifier Perfect Classifier

Figure 3.6: Receiver Operating Characteristic (ROC) Curve
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3.3 Generalization and Overfitting

Typically, we are not just interested in having a good fit for the dataset on which we are
training a classification (or regression) model, after all, we already have the actual classes or
realization of predicted variables in our dataset. What we are really interested in is that
a classification or regression model generalizes to new data.

However, since the models that we are using are highly flexible, it can be the case that we have
a very high accuracy during the training of our model but it does not provide good predictions
when used on new data. This situation is called overfitting: we have a very good fit in our
training dataset, but predictions for new data inputs are bad.
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Figure 3.8: Examples of Overfitting and Underfitting

Figure 3.8 provides examples of overfitting and underfitting. The blue dots represent the
training data 𝑥 and 𝑦, the orange curve represents the fit of the model to the training data. The
left plot shows an example of underfitting: the model is too simple to capture the underlying
structure of the data. The middle plot shows a “good fit”: the model captures the underlying
structure of the data. The right plot shows an example of overfitting: the model is too
complex and captures the noise in the data.

The interactive overfitting figure is not available in the PDF version of this book. Please view
the HTML version to interact with the figure.

Figure 3.9

Figure 3.9 shows an example where the true data generating process (DGP) is a quadratic
function but there is some added noise when we sample from the DGP. The blue dots represent
the training data, the orange curve represents the fitted polynomial of order 𝑘. For example, if
𝑘 = 3, we run a regression of 𝑦 on a constant, 𝑥, 𝑥2, and 𝑥3. The left panel shows the training
data and the fitted polynomial, the middle panel shows the training RMSE as a function of the
polynomial order 𝑘, and the right panel shows the test RMSE as a function of the polynomial
order 𝑘. As we increase the polynomial order (a measure of complexity in our model), the
training RMSE decreases (we use more and more flexible models to fit the data), but the test
RMSE eventually increases, indicating overfitting.
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3.3.1 Bias-Variance Tradeoff

The concepts of bias and variance are useful to understand the tradeoff between underfitting
and overfitting. Suppose that data is generated from the true model 𝑌 = 𝑓(𝑋) + 𝜖, where 𝜖
is a random error term such that 𝔼[𝜖] = 0 and Var[𝜖] = 𝜎2. Let ̂𝑓(𝑥) be the prediction of the
model at 𝑥. One can show that the expected prediction error (or generalization error) of a
model can be decomposed into three parts

EPE(𝑥0) = 𝔼[(𝑌 − ̂𝑓(𝑥0))2|𝑋 = 𝑥0] = Bias2( ̂𝑓(𝑥0)) + Var( ̂𝑓(𝑥0)) + 𝜎2,

where Bias( ̂𝑓(𝑥0)) = 𝔼[ ̂𝑓(𝑥0)] − 𝑓(𝑥0) is the bias at 𝑥0, Var( ̂𝑓(𝑥0)) = 𝔼[ ̂𝑓(𝑥0)2] − 𝔼[ ̂𝑓(𝑥0)]2 is
the variance at 𝑥0, and 𝜎2 is the irreducible error, i.e., the error that cannot be reduced by any
model. As model complexity increases, the bias tends to decrease, but the variance tends to
increase. The following quote from Cornell lecture notes summarizes the bias-variance tradeoff
well:

Variance: Captures how much your classifier changes if you train on a different
training set. How “over-specialized” is your classifier to a particular training set
(overfitting)? If we have the best possible model for our training data, how far off
are we from the average classifier?

Bias: What is the inherent error that you obtain from your classifier even with
infinite training data? This is due to your classifier being “biased” to a particular
kind of solution (e.g. linear classifier). In other words, bias is inherent to your
model.

Noise: How big is the data-intrinsic noise? This error measures ambiguity due to
your data distribution and feature representation. You can never beat this, it is an
aspect of the data.

Figure 3.10 shows the relationship between the model complexity and the prediction error. A
more complex model can reduce the prediction error only up to a certain point. After this point,
the model starts to overfit the training data (it learns noise in the data), and the prediction
error for the test data (i.e., data not used for model training) increases. Ideally, we would like
to find the model complexity that minimizes the prediction error for the test data. We have
seen this behavior in Figure 3.9 where the test RMSE first decreases and then increases as we
increase the polynomial order 𝑘.

3.3.2 Regularization

One approach to avoid overfitting is to use regularization. Regularization adds a penalty term
to the loss function that penalizes large weights. The most common regularization techniques
are L1 regularization and L2 regularization. L1 regularization adds the sum of the absolute
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Figure 3.10: Model Complexity and Generalization Error (adapted from Hastie, Tibshirani,
and Friedman 2009)

values of the weights to the loss function, while L2 regularization adds the sum of the squared
weights to the loss function.

These techniques are applicable across a large range of ML models and depending on the type of
model additional regularization techniques might be available. For example, in neural networks,
dropout regularization is a common regularization technique that randomly removes a set
of artificial neurons during training.

In the context of linear regressions, L1 regularization is also called LASSO regression. The
loss function of LASSO regression is given by

Loss = MSE(𝑦, 𝑥; 𝑤) + 𝜆
𝑚

∑
𝑖=1

|𝑤𝑖|,

where MSE(𝑦, 𝑥; 𝑤) refers to the mean squared error (the standard loss function of a linear
regression), 𝜆 is a hyperparameter that controls the strength of the regularization. Note that
LASSO regression can also be used for feature selection, as it tends to set the weights of
irrelevant features to zero. Figure 3.11 shows the LASSO regression loss for different levels of
𝜆.

An L2 regularization in a linear regression context is called a Ridge regression. Its loss
function is given by

Loss = MSE(𝑦, 𝑥; 𝑤) + 𝜆
𝑚

∑
𝑖=1

𝑤2
𝑖 .
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Figure 3.11: LASSO Regression Loss for Different Levels of 𝜆

We will have a closer look at regularization in the application sections. For now, it is important
to understand that regularization works by constraining the weights of the model (i.e., keeping
the weights small), which can help to avoid overfitting (which might require some weights to
be very large). Figure 3.12 shows the Ridge regression loss for different levels of 𝜆. Note how
the Ridge regression loss is smoother than the LASSO regression loss and that the weights are
never set to exactly zero but just get closer and closer to zero.

3.3.3 Training, Validation, and Test Datasets

Regularization discussed in the previous section is a method to directly prevent overfitting.
However, another approach to the issues is to adjust our evaluation procedure in a way
that allows us to detect overfitting. To do this, we can split the dataset into several parts. The
first option shown in Figure 3.13 is to split the dataset into a training dataset and a test
dataset. The training dataset is used to train the model, while the test dataset is used to
evaluate the model. Why does this help to detect overfitting? If the model performs well on
the training dataset but poorly on the test dataset, this is a sign of overfitting. If the model
performs well on the test dataset, this is a sign that the model generalizes well to new data.
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Figure 3.12: Ridge Regression Loss for Different Levels of 𝜆

INFO Difference with Terminology in Econometrics/Statistics

In econometrics/statistics, it is more common to talk about in-sample and out-of-sample
performance. The idea is the same: the in-sample performance is the performance of the
model on the training dataset, while the out-of-sample performance is the performance of
the model on the test dataset.

Training Test

Figure 3.13: Option A - Splitting the Whole Dataset into Training, and Test Datasets

The second option shown in Figure 3.14 is to split the dataset into a training dataset, a
validation dataset, and a test dataset. The training dataset is used to train the model, the
validation dataset is used to tune the hyperparameters of the model, and the test dataset is
used to evaluate the model.

Common splits are 70% training and 30% test, or 80% training and 20% test in Option A. In
Option B, a common split is 70% training, 15% validation, and 15% test.
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Figure 3.14: Option B - Splitting the Whole Dataset into Training, Test, and Validation
Datasets

3.3.4 Cross-Validation

Another approach to detect overfitting is to use cross-validation. There are different types
of cross-validation but k-fold cross-validation is probably the most common. In k-fold
cross-validation, shown in Figure 3.15, the dataset is split into 𝑘 parts (called folds). The
model is trained on 𝑘 − 1 folds and evaluated on the remaining fold. This process is repeated 𝑘
times, each time using a different fold as the test fold. The performance of the model is then
averaged over the 𝑘 iterations. In practice, 𝑘 = 10 is a common choice. If we set 𝑘 = 𝑁, where
𝑁 is the number of observations in the dataset, we call this leave-one-out cross-validation
or LOOCV.

TrainingTest

Training Test Training

Training Test Training

Training Test Training

Training Test

Split 1

Split 2

Split 3

Split 4

Split 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 3.15: 5-Fold Cross-Validation

The advantage of cross-validation is that it allows us to use all the data for training and testing.
The disadvantage is that it is computationally more expensive than a simple training-test
split.
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3.4 Python Implementation

Let’s have a look at how to implement a logistic regression model in Python. First, we need to
import the required packages

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score,

recall_score, precision_score, roc_curve↪

pd.set_option('display.max_columns', 50) # Display up to 50 columns

Let’s download the dataset automatically, unzip it, and place it in a folder called data if you
haven’t done so already

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dhanushnarayan ⌋

anr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

172



print('Dataset already downloaded!')

Then, we can load the data into a DataFrame using the read_csv function from the pandas
library

df = pd.read_csv('data/card_transdata.csv')

Note that it is common to call this variable df which is short for DataFrame.

This is a dataset of credit card transactions from Kaggle.com. The target variable 𝑦 is
fraud, which indicates whether the transaction is fraudulent or not. The other variables are
the features 𝑥 of the transactions.

3.4.1 Data Exploration & Preprocessing

The first step whenever you load a new dataset is to familiarize yourself with it. You need
to understand what the variables represent, what the target variable is, and what the data
looks like. This is called data exploration. Depending on the dataset, you might need to
preprocess it (e.g., check for missing values and duplicates, or create new variables) before you
can use it to train a machine-learning model. This is called data preprocessing.

Basic Dataframe Operations

Let’s see how many rows and columns the dataset has

df.shape

The dataset has 1 million rows (observations) and 8 columns (variables)! Now, let’s have a
look at the first few rows of the dataset with the head() method

df.head().T

If you would like to see more entries in the dataset, you can use the head() method with an
argument corresponding to the number of rows, e.g.,

df.head(20)

173

https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/data


Note that analogously you can also use the tail() method to see the last few rows of the
dataset.

We can also check what the variables in our dataset are called

df.columns

and the data types of the variables

df.dtypes

In this case, all our variables are floating-point numbers (float). This means that they are
numbers that have a fractional part such as 1.5, 3.14, etc. The number after float, 64 in this
case refers to the number of bits that are used to represent this number in the computer’s
memory. With 64 bits you can store more decimals than you could with, for example, 32,
meaning that the results of computations can be more precise. But for the topics discussed in
this course, this is not very important. Other common data types that you might encounter
are integers (int) such as 1, 3, 5, etc., or strings (str) such as 'hello', 'world', etc.

Let’s dig deeper into the dataset and see some summary statistics

df.describe().T

With the describe() method we can see the count, mean, standard deviation, minimum, 25th
percentile, median, 75th percentile, and maximum values of each variable in the dataset.

Checking for Missing Values and Duplicated Rows

It is also important to check for missing values and duplicated rows in the dataset. Missing
values can be problematic for machine learning models, as they might not be able to handle
them. Duplicated rows can also be problematic, as they might introduce bias in the model.

We can check for missing values (NA) that are encoded as None or numpy.NaN (Not a Number)
with the isna() method. This method returns a boolean DataFrame (i.e., a DataFrame with
True and False values) with the same shape as the original DataFrame, where True values
indicate missing values.

df.isna()

or to make it easier to see, we can sum the number of missing values for each variable
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df.isna().sum()

Luckily, there seem to be no missing values. However, you need to be careful! Sometimes
missing values are encoded as empty strings '' or numpy.inf (infinity), which are not considered
missing values by the isna() method. If you suspect that this might be the case, you need to
make additional checks.

As an alternative, we could also look at the info() method, which provides a summary of
the DataFrame, including the number of non-null values in each column. If there are missing
values, the number of non-null values will be less than the number of rows in the dataset.

df.info()

We can also check for duplicated rows with the duplicated() method.

df.loc[df.duplicated()]

Luckily, there are also no duplicated rows.

Data Visualization

Let’s continue with some data visualization. We can use the matplotlib library to create
plots. We have already imported the library at the beginning of the notebook.

Let’s start by plotting the distribution of the target variable fraud which can only take values
zero and one. We can type

df['fraud'].value_counts()

to get the count of each value. We can also use the normalize=True argument to get the
fraction of observations instead of the count

df['fraud'].value_counts(normalize=True)

We can then plot it as follows
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df['fraud'].value_counts(normalize=True).plot(kind='bar')
plt.xlabel('Fraud')
plt.ylabel('Fraction of Observations')
plt.title('Distribution of Fraud')
ax = plt.gca()
ax.set_ylim([0.0, 1.0])
plt.show()
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Alternatively, we can plot it as a pie chart

df.value_counts("fraud").plot.pie(autopct = "%.1f")
plt.ylabel('')
plt.show()
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Our dataset seems to be quite imbalanced, as only 8.7% of the transactions are fraudulent.
This is a common problem in fraud detection datasets, as fraudulent transactions are usually
very rare. We will need to keep this in mind when evaluating our machine learning model:
the accuracy measure will be very high even for bad models, as the model can just predict that
all transactions are not fraudulent and still get an accuracy of 91.3%.

Let’s look at some distributions. Most of the variables in the dataset are binary (0 or 1)
variables. However, we also have some continuous variables. Let’s plot the distribution of the
variable ratio_to_median_purchase_price, which is a continuous variable.

df['ratio_to_median_purchase_price'].hist(bins = 50, range=[0, 30])
plt.xlabel('Ratio to Median Purchase Price')
plt.ylabel('Count')
plt.show()
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We can also plot the distribution of the variable ratio_to_median_purchase_price by the
target variable fraud to see if there are any differences between fraudulent and non-fraudulent
transactions

fig, ax = plt.subplots(1,2)
df['ratio_to_median_purchase_price'].hist(bins = 50, range=[0, 30],

by=df['fraud'], ax = ax)↪

ax[0].set_xlabel('Ratio to Median Purchase Price')
ax[1].set_xlabel('Ratio to Median Purchase Price')
ax[0].set_ylabel('Count')
ax[0].set_title('No Fraud')
ax[1].set_title('Fraud')
plt.show()
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There are indeed some differences between fraudulent and non-fraudulent transactions. For
example, fraudulent transactions seem to have a higher ratio to the median purchase price,
which is expected as fraudsters might try to make large transactions to maximize their profit.

We can also look at the correlation between the variables in the dataset. The correlation is a
measure of how two variables move together

df.corr() # Pearson correlation (for linear relationships)

df.corr('spearman') # Spearman correlation (for monotonic relationships)

This is still a bit hard to read. We can visualize the correlation matrix with a heatmap using
the Seaborn library, which we have already imported at the beginning of the notebook.

corr = df.corr('spearman')
cmap = sns.diverging_palette(10, 255, as_cmap=True) # Create a color map
mask = np.triu(np.ones_like(corr, dtype=bool)) # Create a mask to only show

the lower triangle of the matrix↪

sns.heatmap(corr, cmap=cmap, vmax=1, center=0, mask=mask) # Create a heatmap
of the correlation matrix (Note: vmax=1 makes sure that the color map
goes up to 1 and center=0 are used to center the color map at 0)

↪

↪

plt.show()
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Note how ratio_to_median_purchase_price is positively correlated with fraud, which is
expected as we saw in the previous plot that fraudulent transactions have a higher ratio to
the median purchase price. Furthermore, used_chip and used_pin_number are negatively
correlated with fraud, which makes sense as transactions, where the chip or the pin is used,
are supposed to be more secure.

We can also plot boxplots to visualize the distribution of the variables

selector = ['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price'] # Select the variables we want to plot↪

plt.figure()
ax = sns.boxplot(data = df[selector], orient = 'h')
ax.set(xscale = "log") # Set the x-axis to a logarithmic scale to better

visualize the data↪

plt.show()
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Boxplots are a good way to visualize the distribution of a variable, as they show the median, the
interquartile range, and the outliers. Each of the distributions shown in the boxplots above has
a long right tail, which explains the large number of outliers. However, you have to be careful:
you cannot just remove these outliers since these are likely to be fraudulent transactions.

Let’s see how many fraudulent transactions we would remove if we blindly remove the outliers
according to the interquartile range

# Compute the interquartile range
Q1 = df['ratio_to_median_purchase_price'].quantile(0.25)
Q3 = df['ratio_to_median_purchase_price'].quantile(0.75)
IQR = Q3 - Q1

# Identify outliers based on the interquartile range
threshold = 1.5
outliers = df[(df['ratio_to_median_purchase_price'] < Q1 - threshold * IQR)

| (df['ratio_to_median_purchase_price'] > Q3 + threshold * IQR)]↪

# Count the number of fraudulent transactions among our selected outliers
outliers['fraud'].value_counts()

df['fraud'].value_counts()
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53092 of 87403 (more than half!) of our fraudulent transactions would be removed if we would
have blindly removed the outliers according to the interquartile range. This is a significant
number of observations, which would likely hurt the performance of our machine-learning
model. Therefore, we should not remove these outliers. It would make the imbalance of our
dataset even worse.

Splitting the Data into Training and Test Sets

Before we can train a machine learning model, we need to split our dataset into a training set
and a test set.

X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables

The training set is used to train the model, while the test set is used to evaluate the model.
We will use the train_test_split function from the sklearn.model_selection module to
split our dataset. We will use 70% of the data for training and 30% for testing. We will also
set the stratify argument to y to make sure that the distribution of the target variable is the
same in the training and test sets. Otherwise, we might randomly not have any fraudulent
transactions in the test set, which would make it impossible to correctly evaluate our model.

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
test_size = 0.3, random_state = 42)↪

Scaling Features

To improve the performance of our machine learning model, we should scale the features. This
is especially important for models that are sensitive to the scale of the features, such as logistic
regression. We will use the StandardScaler class from the sklearn.preprocessing module
to scale the features. The StandardScaler class scales the features so that they have a mean
of 0 and a standard deviation of 1. Since we don’t want to scale features that are binary (0 or
1), we will define a small function that scales only the features that we want

def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:
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features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

Then, we need to run the function

col_names = ['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price']↪

scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

Note that we only fit the scaler to the training set and then transform both the training and
test set. This ensures that the same values for the features produce the same output in the
training and test set. Otherwise, if we fit the scaler to the test data as well, the meaning of
certain values in the test set might change, which would make it impossible to evaluate the
model correctly.

INFO Mini-Exercise

Try switching to MinMaxScaler instead of StandardScaler and see how it affects the
performance of the model. MinMaxScaler scales the features so that they are between 0
and 1.

3.4.2 Implementing Logistic Regression

Now that we have explored and preprocessed our dataset, we can move on to the next step:
training a machine learning model. We will use a logistic regression model to predict whether
a transaction is fraudulent or not.

Using the LogisticRegression class from the sklearn.linear_model module, fitting the
model to the data is straightforward using the fit method

clf = LogisticRegression().fit(X_train, y_train)

We can then use the predict method to predict the class of the test set

183



clf.predict(X_test.head(5))

The actual classes of the first five observations in the test dataset are

y_test.head(5)

This seems to match quite well. Let’s have a look at different performance metrics

y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(f"Precision: {precision_score(y_test, y_pred)}")
print(f"Recall: {recall_score(y_test, y_pred)}")
print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}")

As expected, the accuracy is quite high since we do not have many fraudulent transactions.
Recall that the precision (Precision = TP

TP+FP) is the fraction of correctly predicted fraudulent
transactions among all transactions predicted to be fraudulent. The recall (Recall = TP

TP+FN)
is the fraction of correctly predicted fraudulent transactions among the actual fraudulent
transactions. The ROC AUC is the area under the curve for the receiver operating characteristic
(ROC) curve.

# Compute the ROC curve
y_proba = clf.predict_proba(X_test)
fpr, tpr, thresholds = roc_curve(y_test, y_proba[:,1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()
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The confusion matrix for the test set can be computed as follows

conf_mat = confusion_matrix(y_test, y_pred, labels=[1, 0]).transpose() #
Transpose the sklearn confusion matrix to match the convention in the
lecture

↪

↪

conf_mat

We can also plot the confusion matrix as a heatmap

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud'])↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()

185



Fraud No Fraud
Actual

Fr
au

d
No

 Fr
au

d
Pr

ed
ict

ed

15799 1841

10422 271938
50000

100000

150000

200000

250000

As you can see, we have mostly true negatives and true positives. However, there is still a
significant number of false negatives, which means that we are missing fraudulent transactions,
and a significant number of false positives, which means that we are predicting transactions as
fraudulent that are not fraudulent.

If we would like to use a threshold other than 0.5 to predict the class of the test set, we can do
so as follows

# Alternative threshold
threshold = 0.1

# Predict the class of the test set
y_pred_alt = (y_proba[:, 1] >= threshold).astype(int)

# Show the performance metrics
print(f"Accuracy: {accuracy_score(y_test, y_pred_alt)}")
print(f"Precision: {precision_score(y_test, y_pred_alt)}")
print(f"Recall: {recall_score(y_test, y_pred_alt)}")

Setting a lower threshold increases the recall but decreases the precision. This is because we are
more likely to predict a transaction as fraudulent, which increases the number of true positives
but also the number of false positives.
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What the correct threshold is depends on the problem at hand. For example, if the cost of
missing a fraudulent transaction is very high, you might want to set a lower threshold to
increase the recall. If the cost of falsely predicting a transaction as fraudulent is very high, you
might want to set a higher threshold to increase the precision.

We can also plot the performance metrics for different thresholds

N = 50
thresholds_array = np.linspace(0.0, 0.999, N)
accuracy_array = np.zeros(N)
precision_array = np.zeros(N)
recall_array = np.zeros(N)

# Compute the performance metrics for different thresholds
for ii, thresh in enumerate(thresholds_array):

y_pred_alt_tmp = (y_proba[:, 1] > thresh).astype(int)
accuracy_array[ii] = accuracy_score(y_test, y_pred_alt_tmp)
precision_array[ii] = precision_score(y_test, y_pred_alt_tmp)
recall_array[ii] = recall_score(y_test, y_pred_alt_tmp)

# Plot the performance metrics
plt.plot(thresholds_array, accuracy_array, label='Accuracy')
plt.plot(thresholds_array, precision_array, label='Precision')
plt.plot(thresholds_array, recall_array, label='Recall')
plt.xlabel('Threshold')
plt.ylabel('Score')
plt.legend()
plt.show()
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3.4.3 Implementing K-Nearest Neighbors

As an alternative to logistic regression, we can also use a K-Nearest Neighbors (KNN) classifier.
The KNN classifier is a simple and intuitive machine learning model that classifies a new
observation based on the classes of its k-nearest neighbors in the training set.

Let’s restrict ourselves to variables that are continuous for the KNN classifier

continuous_vars = ['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price']↪

X_train_knn = X_train[continuous_vars]
X_test_knn = X_test[continuous_vars]

We can create a KNN classifier with k=5 and fit it to the training data

knn = KNeighborsClassifier(n_neighbors=5).fit(X_train_knn, y_train)
y_pred_knn = knn.predict(X_test_knn)

We can then evaluate the performance of the KNN classifier using the same performance metrics
as before
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print(f"Accuracy: {accuracy_score(y_test, y_pred_knn)}")
print(f"Precision: {precision_score(y_test, y_pred_knn)}")
print(f"Recall: {recall_score(y_test, y_pred_knn)}")
print(f"ROC AUC: {roc_auc_score(y_test, knn.predict_proba(X_test_knn)[:,

1])}")↪

The KNN classifier seems to perform slightly worse than the logistic regression model. Part of
the reason for this is that we only used three features for the KNN classifier, while we used all
features for the logistic regression model.

INFO Mini-Exercise

Try different values of n_neighbors (k) and plot how it affects the performance of the
KNN classifier. Hint: You can use a loop to train the KNN classifier for different values
of k and store the performance metrics in arrays. Then, you can plot the performance
metrics as a function of k.

INFO Mini-Exercise

Implement a 5-fold cross-validation for the logistic regression and K-Nearest Neighbors
classifiers. Use the cross_val_score function from the sklearn.model_selection
module.

# Import the cross_val_score function
from sklearn.model_selection import cross_val_score

# Apply 5-fold cross-validation to the classifier clf
cv_scores = cross_val_score(clf, X, y, cv=5, scoring='roc_auc')

# Mean of the cross-validation scores
cv_scores.mean()

3.4.4 Conclusions

In this section, we have seen how to implement a logistic regression model and a K-Nearest
Neighbors classifier in Python. We have loaded a dataset, explored and preprocessed it, and
trained a logistic regression model and a K-Nearest Neighbors classifier to predict whether a
transaction is fraudulent or not. We have evaluated the model using different performance
metrics and have seen how the choice of threshold affects the performance of the model.
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There are many ways to improve the performance of the models. For example, we could try
different machine learning models, or engineer new features. We could also try to deal with the
imbalanced dataset by using techniques such as oversampling or undersampling. However, this
is beyond the scope of this section.
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Chapter 4

Decision Trees

Now that we have covered some of the basics of machine learning, we can start looking at some
of the most popular machine learning algorithms. In this chapter, we will focus on Decision
Trees and tree-based ensemble methods such as Random Forests and (Gradient)
Boosted Trees.

4.1 What is a Decision Tree?

Decision trees, also called Classification and Regression Trees (CART) are a popular
supervised learning method. As the name CART suggests, they are used for both
classification and regression problems. They are simple to understand and interpret, and
the process of building a decision tree is intuitive. Decision trees are also the foundation of
more advanced ensemble methods like Random Forests and Boosting.

Does it have more than 2 legs?

It’s a dog!

yes

Does it have feathers?

It’s a bird!

yes

Does it live on land?

It’s a snake!

yes

It’s a fish!

no

no

no

Figure 4.1: Classification Tree - Classification of Dogs, Snakes, Fish, and Birds based on their
Features
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Figure 4.1 shows an example of a decision tree for a classification problem, i.e., a classification
tree. In this case, the decision tree is used to classify animals into four categories: dogs,
snakes, fish, and birds. The tree asks a series of questions about the features of the animal
(e.g., number of legs, feathers, and habitat) and uses the answers to classify the animal. This
means that the tree partitions the feature space into different regions that are associated with
a particular class label.

x1 ≤ 3

x1 ≤ 1.5

y = 1

yes

y = 2

no

yes

x2 ≤ 5

y = 4

yes

x1 ≤ 6

y = 6

yes

y = 5

no

no

no

Figure 4.2: Regression Tree - Prediction of 𝑦 based on 𝑥1 and 𝑥2

Figure 4.2 shows an example of a decision tree for a regression problem, i.e., a regression tree.
In this case, the decision tree is used to predict some continuous variable 𝑦 (e.g., a house price)
based on features 𝑥1 and 𝑥2 (e.g., number of rooms and size of the property). As Figure 4.3
shows, the regression tree partitions the (𝑥1, 𝑥2)-space into different regions that are associated
with a predicted value 𝑦. Mathematically, the prediction of a regression tree can be expressed
as

̂𝑦 =
𝑀

∑
𝑚=1

𝑐𝑚𝟙(𝑥 ∈ 𝑅𝑚)

where 𝑅𝑚 are the regions of the feature space, 𝑐𝑚 are the predicted (i.e., average) values in the
regions, 𝟙(𝑥 ∈ 𝑅𝑚) is an indicator function that is 1 if 𝑥 is in region 𝑅𝑚 and 0 otherwise, and
𝑀 is the number of regions.

INFO Mini-Exercise

Given the decision tree in Figure 4.2, what would be the predicted value of 𝑦 for the
following data points?

1. (𝑥1, 𝑥2) = (1, 1)
2. (𝑥1, 𝑥2) = (2, 2)
3. (𝑥1, 𝑥2) = (2, 8)
4. (𝑥1, 𝑥2) = (10, 4)
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Figure 4.3: Regression Tree - Regions and Predictions of Decision Tree in Figure 4.2

5. (𝑥1, 𝑥2) = (7, 8)

4.2 Terminology

Root/Decision Node

Decision Node

Decision Node

Leaf Node Leaf Node

Leaf Node

Leaf Node

Subtree/Branch

Figure 4.4: Decision Tree - Terminology

Figure 4.4 shows some of the terminology that you might encounter in decision trees. The root
node is the first node in the tree. The root node is split into child nodes, which can be either
decision nodes or leaf nodes. The decision nodes are further split into decision nodes or leaf
nodes. The leaf nodes represent the final prediction of the model. A subtree or branch is a

193



part of the tree that starts at a decision node and ends at a leaf node. The depth of a tree is
the length of the longest path from the root node to a leaf node.

Furthermore, one can also differentiate between child and parent nodes. A child node is a
node that results from a split (e.g., the first (reading from the top) decision node and leaf node
in Figure 4.4 are child nodes of the root node). The parent node is the node that is split to
create the child nodes (e.g., the root node in Figure 4.4 is the parent node of the first decision
node and leaf node).

4.3 How To Grow a Tree

A key question is how to determine the order of variables and thresholds that are used in all
the splits of a decision tree. There are different algorithms to grow a decision tree, but the
most common one is the CART algorithm. The CART algorithm is a greedy algorithm
that grows the tree in a top-down manner. The reason for this algorithm choice is that it is
computationally infeasible to consider all possible (fully grown) trees to find the best-performing
one. So, the CART algorithm grows the tree in a step-by-step manner choosing the splits in a
greedy manner (i.e., choosing the one that performs best at that step). This means that the
algorithm does not consider the future consequences of the current split and may not find the
optimal tree.

The basic idea is to find a split that minimizes some loss function 𝑄𝑠 and to repeat this
recursively for all resulting child nodes. Suppose we start from zero, meaning that we first need
to determine the root node. We compute the loss function 𝑄𝑠 for all possible splits 𝑠 that we
can make. This means we need to consider all variables in our dataset (and all split thresholds)
and choose the one that minimizes the loss 𝑄𝑠. We then repeat this process for each of the
child nodes, and so on, until we reach a stopping criterion. Figure 4.5 shows an example of a
candidate split.

Candidate Split s: e.g., x1 ≤ 3

New Node (τ = 1)

Loss: Qs
1

New Node (τ = 2)

Loss: Qs
2

Total loss: Qs = N1

N1+N2
Qs

1 +
N2

N1+N2
Qs

2

Data Points

Data Points in Region R2Data Points in Region R1

Figure 4.5: Example of Decision Tree Split

Let 𝜏 denote the index of a leaf node with each leaf node 𝜏 corresponding to a region 𝑅𝜏 with
𝑁𝜏 data points. In the case of a classification problem, the loss function is typically either the
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Gini impurity

𝑄𝑠
𝜏 =

𝐾
∑
𝑘=1

𝑝𝜏𝑘(1 − 𝑝𝜏𝑘) = 1 −
𝐾

∑
𝑘=1

𝑝2
𝜏𝑘

or the cross-entropy

𝑄𝑠
𝜏 = −

𝐾
∑
𝑘=1

𝑝𝜏𝑘 log(𝑝𝜏𝑘)

where 𝑝𝜏𝑘 is the proportion of observations in region 𝑅𝜏 that belong to class 𝑘 and 𝐾 is the
number of classes. Note that both measures become zero when all observations in the region
belong to the same class (i.e., 𝑝𝜏𝑘 = 1 or 𝑝𝜏𝑘 = 0). This is the ideal case for a classification
problem: we say that the node is pure.

In the case of a regression problem, the loss function is typically the mean squared error
(MSE)

𝑄𝑠
𝜏 = 1

𝑁𝜏
∑
𝑖∈𝑅𝜏

(𝑦𝑖 − ̂𝑦𝜏)2

where ̂𝑦𝜏 is the predicted value of the target variable 𝑦 in region 𝑅𝜏

̂𝑦𝜏 = 1
𝑁𝜏

∑
𝑖∈𝑅𝜏

𝑦𝑖,

i.e., the average of the target variable in region 𝑅𝜏.

The total loss of a split 𝑄𝑠 is then the weighted sum of the loss functions of the child nodes

𝑄𝑠 = 𝑁1
𝑁1 + 𝑁2

𝑄𝑠
1 + 𝑁2

𝑁1 + 𝑁2
𝑄𝑠

2

where 𝑁1 and 𝑁2 are the number of data points in the child nodes.

Once we have done this for the root node, we repeat the process for each child node. Then, we
repeat it for the child nodes of the child nodes, and so on, until we reach a stopping criterion.
The stopping criterion can be, for example, a maximum depth of the tree, a minimum number
of data points in a leaf node, or a minimum reduction in the loss function.
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4.3.1 Example: Classification Problem

Suppose you have the data in Table 4.1. The goal is to predict whether a bank will default
based on two features: whether the bank is systemically important and its Common Equity
Tier 1 (CET1) ratio (i.e., the ratio of CET1 capital to risk-weighted assets). The CET1 ratio
is a measure of a bank’s financial strength.

Table 4.1: (Made-up) Data for Classification Problem (Bank Default Prediction)

Default Systemically Important Bank CET1 Ratio (in %)

Yes No 8.6
No No 9
Yes Yes 10.6
Yes Yes 10.8
No No 11.2
No No 11.5
No Yes 12.4

Given that you only have two features, CET1 Ratio and whether it is a systemically important
bank, you only have two possible variables for the root node. However, since CET1 is a
continuous variable, there are potentially many thresholds that you could use to split the data.
To find this threshold, we need to calculate the Gini impurity of each possible split and
choose the one that minimizes the impurity.

Table 4.2: Gini Impurities for Different CET1 Thresholds

CET1 Ratio Threshold Q� Q� Q

8.8 0 0.44 0.38
9.8 0.5 0.48 0.49

10.7 0.44 0.38 0.4
11 0.38 0 0.21

11.35 0.48 0 0.34
11.95 0.5 0 0.43

According to Table 4.2, the best split is at a CET1 ratio of 11.0%. The Gini impurity for
CET1 ≤ 11% is 0.38, the Gini impurity of CET1 > 11% is 0, and the total impurity is 0.21.
However, we could also split based on whether a bank would be systemically important. In
this case, the Gini impurity of the split is 0.40. This means that the best split is based on the
CET1 ratio. We split the data into two regions: one with a CET1 ratio of 11.0% or less and
one with a CET1 ratio of more than 11.0%.
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Note that the child node for a CET1 ratio of more than 11.0% is already pure, i.e., all banks in
this region are not defaulting. However, the child node for a CET1 ratio of 11.0% or less is not
pure meaning that we can do additional splits as shown in Figure 4.6. In particular, both, the
split at a CET1 ratio of 8.8% and the split based on whether a bank is systemically important
yield a Gini impurity of 0.25. We choose the split based on whether a bank is systemically
important as the next split, which means we can do the final split based on the CET1 ratio.

CET1 Ratio ≤ 11.0%

Systemically Important?

Default

yes

CET1 Ratio ≤ 8.8%

Default

yes

No Default

no

no

yes

No Default

no

Figure 4.6: Classification Tree for Table 4.1

4.3.2 Stopping Criteria and Pruning a Tree

A potential problem with decision trees is that they can overfit the training data. In principle,
we can get the error down to zero if we just make enough splits. This means that the tree can
become too complex and capture noise in the data rather than the underlying relationship. To
prevent this, we usually set some early stopping criteria like

• A maximum depth of the tree,
• A minimum number of data points in a leaf node,
• A minimum number of data points required in a decision node for a split,
• A minimum reduction in the loss function, or
• A maximum number of leaf nodes,

which will prevent the tree from growing too large and all the nodes from becoming pure. We
can also use a combination of these criteria. In the Python applications, we will see how to set
some of these stopping criteria.

Figure 4.7 shows an example of how stopping criteria affect the fit of a decision tree. Note that
without any stopping criteria, the tree fits the data perfectly but is likely to overfit. By setting
a maximum depth or a minimum number of data points in a leaf node, we can prevent the tree
from overfitting the data.
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Figure 4.7: Regression Tree - Effect of Stopping Criteria

Another way to prevent overfitting is to prune the tree, i.e., to remove nodes from the tree
according to certain rules. This is done after (not during) growing the tree. One common
approach is to use cost-complexity pruning. The idea is related to regularization that we
have seen before, i.e., we add a term to the loss functions above that penalizes tree complexity.
The pruning process is controlled by a hyperparameter 𝜆 that determines the trade-off between
the complexity of the tree and its fit to the training data.

INFO Mini-Exercise

How would the decision tree in Figure 4.6 look like if

1. we required a minimum of 2 data points in a leaf node?
2. we required a maximum depth of 2?
3. we required a maximum depth of 2 and a minimum of 3 data points in a leaf node?
4. we required a minimum of 3 data points for a split?
5. we required a minimum of 5 data points for a split?
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4.4 Advantages and Disadvantages

As noted by Murphy (2022), decision trees are popular because of some of the advantages
they offer

• Easy to interpret
• Can handle mixed discrete and continuous inputs
• Insensitive to monotone transformations of the inputs
• Automatic variable selection
• Relatively robust to outliers
• Fast to fit and scale well to large data sets
• Can handle missing input features1

Their disadvantages include

• Not very accurate at prediction compared to other kinds of models (note, for example,
the piece-wise constant nature of the predictions in regression problems)

• They are unstable: small changes to the input data can have large effects on the structure
of the tree (small changes at the top can affect the rest of the tree)

4.5 Ensemble Methods

Decision trees are powerful models, but they can be unstable. To address these issues, we can
use ensemble methods that combine multiple decision trees to improve the performance of
the model. The two most popular ensemble methods are Random Forests and Boosting.

4.5.1 Random Forests

The idea of Random Forests is to build a large number of trees (also called weak learners
in this context), each of which is trained on a random subset of the data. The predictions
of the trees are then averaged in regression tasks or determined through majority voting in
the case of classification tasks to make the final prediction. Training multiple trees on random
subsets of the data is also called bagging (short for bootstrap aggregating). Random
Forests adds an additional layer of randomness by selecting a random subset of features at
each split. This means that each tree is trained on a different subset of the data and considers
different features at each decision node.

The basic steps of the Random Forest algorithm are as follows:

1Note to handle missing input data one can use “backup” variables that are correlated with the variable of
interest and can be used to make a split whenever the data is missing. Such splits are called surrogate
splits. In the case of categorical variables, one can also use a separate category for missing values.
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· · ·

It’s a dog! It’s a cat! It’s a dog!

Tree 1 Tree 2 Tree B

Figure 4.8: Random Forests - Ensemble of Decision Trees with Majority Decision “It’s a dog!”

1. Bootstrapping: Randomly draw 𝑁 samples with replacement from the training data.
2. Grow a tree: For each node of the tree, randomly select 𝑚 features from the 𝑝 features

in the bootstrap dataset and find the best split based on these 𝑚 features.
3. Repeat: Repeat steps 1 and 2 𝐵 times to grow 𝐵 trees.
4. Prediction: To get the prediction for a new data point, average the predictions of all

trees in the case of regression or use a majority vote in the case of classification.

Note that because we draw samples with replacement, some samples will not be included in the
bootstrap sample. These samples are called out-of-bag (OOB) samples. The OOB samples
can be used to estimate the performance of the model without the need for cross-validation
since it is “performed along the way” (Hastie, Tibshirani, and Friedman (2009)). The OOB
error is almost identical to the error obtained through k-fold cross-validation.

4.5.2 Boosting

Another popular ensemble method is Boosting. The idea behind boosting is to train a sequence
of weak learners (e.g., decision trees), each of which tries to correct the mistakes of the previous
one. The predictions of the weak learners are then combined to make the final prediction. Note
how this differs from Random Forests where the trees are trained independently of each other
in parallel, while in boosting we sequentially train the trees to fix the mistakes of the previous
ones. The basic steps can be roughly summarized as follows:

1. Initialize the model: Construct a base tree with just a root node. In the case of a
regression problem, the prediction could be the mean of the target variable. In the case
of a classification problem, the prediction could be the log odds of the target variable.

2. Train a weak learner: Train a weak learner on the data. The weak learner tries to
correct the mistakes of the previous model.

3. Update the model: Update the model by adding the weak learner to the model. The
added weak learner is weighted by a learning rate 𝜂.

4. Repeat: Repeat steps 2 and 3 until we have grown 𝐵 trees.

XGBoost (eXtreme Gradient Boosting) is a popular implementation of the (gradient) boosting
algorithm. It is known for its performance and is widely used in machine learning competitions.
The algorithm is based on the idea of gradient boosting, which is a generalization of boosting.
We will see how to implement XGBoost in Python but will not go into the details of the
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algorithm here. Other popular implementations of the boosting algorithm are AdaBoost and
LightGBM.

4.5.3 Interpreting Ensemble Methods

A downside of using ensemble methods is that you lose the interpretability of a single decision
tree. However, there are ways to interpret ensemble methods. One way is to look at the
feature importance. Feature importance tells you how much each feature contributes to the
reduction in the loss function. The idea is that features that are used in splits that lead to a
large reduction in the loss function are more important. Murphy (2022) shows that the feature
importance of feature 𝑘 is

𝑅𝑘(𝑏) =
𝐽−1
∑
𝑗=1

𝐺𝑗𝕀(𝑣𝑗 = 𝑘)

where the sum is over all non-leaf (internal) nodes, 𝐺𝑗 is the loss reduction (gain) at node 𝑗,
and 𝑣𝑗 = 𝑘 if node 𝑗 uses feature 𝑘. Simply put, we sum up all gains of the splits that use
feature 𝑘. Then, we average over all trees in our ensemble to get the feature importance of
feature 𝑘

𝑅𝑘 = 1
𝐵

𝐵
∑
𝑏=1

𝑅𝑘(𝑏).

Note that the resulting 𝑅𝑘 are sometimes normalized such that the maximum value is 100.
This means that the most important feature has a feature importance of 100 and all other
features are scaled accordingly. Note that feature importance can in principle also be computed
for a single decision tree.

Exclamation-Triangle Warning

Note that feature importance tends to favor continuous variables and variables with
many categories (for an example see here). As an alternative, one can use permutation
importance which is a model-agnostic way to compute the importance of different
features. The idea is to shuffle the values of a feature in the test data set and see how
much the model performance decreases. The more the performance decreases, the more
important the feature is.
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4.6 Python Implementation

Let’s have a look at how to implement a decision tree in Python. Again, we need to first import
the required packages and load the data

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score,

recall_score, precision_score, roc_curve↪

from sklearn.inspection import permutation_importance
pd.set_option('display.max_columns', 50) # Display up to 50 columns
from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dhanushnarayan ⌋

anr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')
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Dataset already downloaded!

# Load the data
df = pd.read_csv('data/card_transdata.csv')

This is the dataset of credit card transactions from Kaggle.com which we have used before.
Recall that the target variable 𝑦 is fraud, which indicates whether the transaction is fraudulent
or not. The other variables are the features 𝑥 of the transactions.

df.head(20)

distance_from_home distance_from_last_transaction \
0 57.877857 0.311140
1 10.829943 0.175592
2 5.091079 0.805153
3 2.247564 5.600044
4 44.190936 0.566486
5 5.586408 13.261073
6 3.724019 0.956838
7 4.848247 0.320735
8 0.876632 2.503609
9 8.839047 2.970512
10 14.263530 0.158758
11 13.592368 0.240540
12 765.282559 0.371562
13 2.131956 56.372401
14 13.955972 0.271522
15 179.665148 0.120920
16 114.519789 0.707003
17 3.589649 6.247458
18 11.085152 34.661351
19 6.194671 1.142014

ratio_to_median_purchase_price repeat_retailer used_chip \
0 1.945940 1.0 1.0
1 1.294219 1.0 0.0
2 0.427715 1.0 0.0
3 0.362663 1.0 1.0
4 2.222767 1.0 1.0
5 0.064768 1.0 0.0
6 0.278465 1.0 0.0
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7 1.273050 1.0 0.0
8 1.516999 0.0 0.0
9 2.361683 1.0 0.0
10 1.136102 1.0 1.0
11 1.370330 1.0 1.0
12 0.551245 1.0 1.0
13 6.358667 1.0 0.0
14 2.798901 1.0 0.0
15 0.535640 1.0 1.0
16 0.516990 1.0 0.0
17 1.846451 1.0 0.0
18 2.530758 1.0 0.0
19 0.307217 1.0 0.0

used_pin_number online_order fraud
0 0.0 0.0 0.0
1 0.0 0.0 0.0
2 0.0 1.0 0.0
3 0.0 1.0 0.0
4 0.0 1.0 0.0
5 0.0 0.0 0.0
6 0.0 1.0 0.0
7 1.0 0.0 0.0
8 0.0 0.0 0.0
9 0.0 1.0 0.0
10 0.0 1.0 0.0
11 0.0 1.0 0.0
12 0.0 0.0 0.0
13 0.0 1.0 1.0
14 0.0 1.0 0.0
15 1.0 1.0 0.0
16 0.0 0.0 0.0
17 0.0 0.0 0.0
18 0.0 1.0 0.0
19 0.0 0.0 0.0

df.describe()

distance_from_home distance_from_last_transaction \
count 1000000.000000 1000000.000000
mean 26.628792 5.036519
std 65.390784 25.843093
min 0.004874 0.000118
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25% 3.878008 0.296671
50% 9.967760 0.998650
75% 25.743985 3.355748
max 10632.723672 11851.104565

ratio_to_median_purchase_price repeat_retailer used_chip \
count 1000000.000000 1000000.000000 1000000.000000
mean 1.824182 0.881536 0.350399
std 2.799589 0.323157 0.477095
min 0.004399 0.000000 0.000000
25% 0.475673 1.000000 0.000000
50% 0.997717 1.000000 0.000000
75% 2.096370 1.000000 1.000000
max 267.802942 1.000000 1.000000

used_pin_number online_order fraud
count 1000000.000000 1000000.000000 1000000.000000
mean 0.100608 0.650552 0.087403
std 0.300809 0.476796 0.282425
min 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000
50% 0.000000 1.000000 0.000000
75% 0.000000 1.000000 0.000000
max 1.000000 1.000000 1.000000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 distance_from_home 1000000 non-null float64
1 distance_from_last_transaction 1000000 non-null float64
2 ratio_to_median_purchase_price 1000000 non-null float64
3 repeat_retailer 1000000 non-null float64
4 used_chip 1000000 non-null float64
5 used_pin_number 1000000 non-null float64
6 online_order 1000000 non-null float64
7 fraud 1000000 non-null float64
dtypes: float64(8)
memory usage: 61.0 MB
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4.6.1 Data Preprocessing

Since we have already explored the dataset in the previous section, we can skip that part and
move directly to the data preprocessing.

We will again split the data into training and test sets using the train_test_split function

X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,

test_size = 0.3, random_state = 42)↪

Then we can do the feature scaling to ensure our non-binary variables have mean zero and
variance 1

def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

col_names = ['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price']↪

scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

4.6.2 Implementing a Decision Tree Classifier

We can now implement a decision tree model using the DecisionTreeClassifier class from
the sklearn.tree module. Fitting the model to the data is almost the same as when we used
logistic regression
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clf_dt = DecisionTreeClassifier(random_state=0).fit(X_train, y_train)

We can visualize the tree using the plot_tree function from the sklearn.tree module

plot_tree(clf_dt, filled=True, feature_names = X_train.columns.to_list())
plt.show()
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The tree is quite large and it’s difficult to see details. Let’s only look at the first level of the
tree

plot_tree(clf_dt, max_depth=1, filled=True, feature_names =
X_train.columns.to_list(), fontsize=10)↪

plt.show()
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  (...)    (...)    (...)    (...)  
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Recall from the data exploration that ratio_to_median_purchase_price was highly correlated
with fraud. The decision tree model seems to have picked up on this as well since the first split
is based on this variable. Also, note that the order in which the variables are split can differ
between different branches of the tree.

We can also make predictions using the model and evaluate its performance using the same
functions as before

y_pred_dt = clf_dt.predict(X_test)
y_proba_dt = clf_dt.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_dt)}")

Accuracy: 0.9999833333333333

print(f"Precision: {precision_score(y_test, y_pred_dt)}")

Precision: 0.9999237223493517

print(f"Recall: {recall_score(y_test, y_pred_dt)}")

Recall: 0.999885587887571
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print(f"ROC AUC: {roc_auc_score(y_test, y_proba_dt[:, 1])}")

ROC AUC: 0.999939141362689

The decision tree performs substantially better than the logistic regression. The ROC AUC
score is much closer to the maximum value of 1 and we have an almost perfect classifier

# Compute the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_proba_dt[:, 1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()
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Let’s also check the confusion matrix to see where we still make mistakes

conf_mat = confusion_matrix(y_test, y_pred_dt, labels=[1, 0]).transpose() #
Transpose the sklearn confusion matrix to match the convention in the
lecture

↪

↪
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sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud'])↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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There are only 3 false negatives, i.e., fraudulent transactions that we did not detect. There are
also 2 false positives, i.e., “false alarms”, where non-fraudulent transactions were classified as
fraudulent. The decision tree classifier is almost perfect which is a bit suspicious. We might
have been lucky in the sense that the training and test sets were split in a way that the model
performs very well. We should not expect this to be the case in general. It might be better to
use cross-validation to get a more reliable estimate of the model’s performance.

4.6.3 Implementing a Random Forest Classifier

We can also implement a random forest model using the RandomForestClassifier class from
the sklearn.ensemble module. Fitting the model to the data is almost the same as when we
used logistic regression and decision trees

clf_rf = RandomForestClassifier(random_state = 0).fit(X_train, y_train)
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Note that it takes a bit longer to train the Random Forest since we have to train many trees
(the default setting is 100). We can also make predictions using the model and evaluate its
performance using the same functions as before

y_pred_rf = clf_rf.predict(X_test)
y_proba_rf = clf_rf.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_rf)}")

Accuracy: 0.9999833333333333

print(f"Precision: {precision_score(y_test, y_pred_rf)}")

Precision: 1.0

print(f"Recall: {recall_score(y_test, y_pred_rf)}")

Recall: 0.9998093131459517

print(f"ROC AUC: {roc_auc_score(y_test, y_proba_rf[:, 1])}")

ROC AUC: 0.999999999164201

As expected, the Random Forest performs better than the Decision Tree in the metrics we have
used. Now, let’s also check the confusion matrix to see where we still make mistakes

conf_mat = confusion_matrix(y_test, y_pred_rf, labels=[1, 0]).transpose() #
Transpose the sklearn confusion matrix to match the convention in the
lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud'])↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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There are still some false negatives, but the number of false positives has decreased compared
to the Decision Tree model.

4.6.4 Implementing a XGBoost Classifier

Let’s also have a look at the XGBoost classifier. We can implement the model using the
XGBClassifier class from the xgboost package. Fitting the model to the data is almost the
same as when we used logistic regression, decision trees, and random forests, even though it is
not part of the sklearn package. This is because the xgboost package is designed to work
well with the sklearn package. Let’s fit the model to the data

clf_xgb = XGBClassifier(random_state = 0).fit(X_train, y_train)

y_pred_xgb = clf_xgb.predict(X_test)
y_proba_xgb = clf_xgb.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred_xgb)}")

Accuracy: 0.9983333333333333
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print(f"Precision: {precision_score(y_test, y_pred_xgb)}")

Precision: 0.9896440129449838

print(f"Recall: {recall_score(y_test, y_pred_xgb)}")

Recall: 0.9913046794553984

print(f"ROC AUC: {roc_auc_score(y_test, y_proba_xgb[:, 1])}")

ROC AUC: 0.9999735930686904

Let’s also check the confusion matrix to see where we still make mistakes

conf_mat = confusion_matrix(y_test, y_pred_xgb, labels=[1, 0]).transpose() #
Transpose the sklearn confusion matrix to match the convention in the
lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud'])↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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The XGBoost model seems to perform a bit worse than the Random Forest model. There are
more false negatives and false positives. However, the model is still very good at detecting
fraudulent transactions and has a high ROC AUC score. Adjusting the hyperparameters of the
model might improve its performance.

4.6.5 Feature Importance

We can also look at the feature importance of each model. The feature importance is a measure
of how much each feature contributes to the model’s predictions. Let’s start with the Decision
Tree model

# Create a DataFrame with the feature importance
df_feature_importance_dt = pd.DataFrame({'Feature': X_train.columns,

'Importance': clf_dt.feature_importances_})↪

df_feature_importance_dt = df_feature_importance_dt.sort_values('Importance',
ascending=False)↪

# Plot the feature importance
plt.barh(df_feature_importance_dt['Feature'],

df_feature_importance_dt['Importance'])↪

plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance - Decision Tree')
plt.show()
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This shows that the ratio_to_median_purchase_price is the most important feature for
determining whether a transaction is fraudulent or not. Whether a transaction is online, is
important as well.

Let’s also look at the feature importance of the Random Forest model

# Create a DataFrame with the feature importance
df_feature_importance_rf = pd.DataFrame({'Feature': X_train.columns,

'Importance': clf_rf.feature_importances_})↪

df_feature_importance_rf = df_feature_importance_rf.sort_values('Importance',
ascending=False)↪

# Plot the feature importance
plt.barh(df_feature_importance_rf['Feature'],

df_feature_importance_rf['Importance'])↪

plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance - Random Forest')
plt.show()
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Somewhat surprisingly, XGBoost seems to have picked up on different features than the Decision
Tree and Random Forest models. The most important feature is online_order, followed by
ratio_to_median_purchase_price as you can see from the plot below

# Create a DataFrame with the feature importance
df_feature_importance_xgb = pd.DataFrame({'Feature': X_train.columns,

'Importance': clf_xgb.feature_importances_})↪

df_feature_importance_xgb =
df_feature_importance_xgb.sort_values('Importance', ascending=False)↪

# Plot the feature importance
plt.barh(df_feature_importance_xgb['Feature'],

df_feature_importance_xgb['Importance'])↪

plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance - XGBoost')
plt.show()
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4.6.6 Permutation Importance

We can also look at the permutation importance of each model. The permutation importance
is a measure of how much each feature contributes to the model’s predictions. The permutation
importance is calculated by permuting the values of each feature and measuring how much the
model’s performance decreases. Let’s start with the Decision Tree model

# Calculate the permutation importance
result_dt = permutation_importance(clf_dt, X_test, y_test, n_repeats=10,

random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_dt = pd.DataFrame({'Feature': X_train.columns,

'Importance': result_dt.importances_mean})↪

df_permutation_importance_dt =
df_permutation_importance_dt.sort_values('Importance', ascending=False)↪

# Plot the permutation importance
plt.barh(df_permutation_importance_dt['Feature'],

df_permutation_importance_dt['Importance'])↪

plt.xlabel('Accuracy Decrease')
plt.ylabel('Feature')
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plt.title('Permutation Importance - Decision Tree')
plt.show()
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Let’s also look at the permutation importance of the Random Forest model

# Calculate the permutation importance
result_rf = permutation_importance(clf_rf, X_test, y_test, n_repeats=10,

random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_rf = pd.DataFrame({'Feature': X_train.columns,

'Importance': result_rf.importances_mean})↪

df_permutation_importance_rf =
df_permutation_importance_rf.sort_values('Importance', ascending=False)↪

# Plot the permutation importance
plt.barh(df_permutation_importance_rf['Feature'],

df_permutation_importance_rf['Importance'])↪

plt.xlabel('Accuracy Decrease')
plt.ylabel('Feature')
plt.title('Permutation Importance - Random Forest')
plt.show()
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Let’s also look at the permutation importance of the XGBoost model

# Calculate the permutation importance
result_xgb = permutation_importance(clf_xgb, X_test, y_test, n_repeats=10,

random_state=0)↪

# Create a DataFrame with the permutation importance
df_permutation_importance_xgb = pd.DataFrame({'Feature': X_train.columns,

'Importance': result_xgb.importances_mean})↪

df_permutation_importance_xgb =
df_permutation_importance_xgb.sort_values('Importance', ascending=False)↪

# Plot the permutation importance
plt.barh(df_permutation_importance_xgb['Feature'],

df_permutation_importance_xgb['Importance'])↪

plt.xlabel('Accuracy Decrease')
plt.ylabel('Feature')
plt.title('Permutation Importance - XGBoost')
plt.show()

219



0.00 0.02 0.04 0.06 0.08 0.10
Accuracy Decrease

ratio_to_median_purchase_price

online_order

distance_from_home

used_pin_number

used_chip

distance_from_last_transaction

repeat_retailer

Fe
at

ur
e

Permutation Importance - XGBoost

Here the results for the three models are quite similar. The most important feature is
ratio_to_median_purchase_price, followed by online_order.

4.6.7 Conclusions

In this section, we have seen how to implement decision trees, random forests, and XGBoost
classifiers in Python. We have also seen how to evaluate the performance of these models using
metrics such as accuracy, precision, recall, and ROC AUC. We have seen that the Random
Forest and XGBoost models perform better than the Decision Tree model. Furthermore, we
looked at the feature and permutation importance of each model to see which features are most
important for determining whether a transaction is fraudulent or not.
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Chapter 5

Neural Networks

In this chapter, we have a look at neural networks which are a popular machine learning
method. We will cover the basics of neural networks and how they can be trained.

5.1 What is a Neural Network?

Neural networks are at the core of many cutting-edge machine learning models. They can be
used as both a supervised and unsupervised learning method. In this course, we will
focus on their application in supervised learning where they are used for both regression and
classification tasks. While they are conceptually not much more difficult to understand than
decision trees, a neural network is not as easy to interpret as a decision tree. For this
reason, they are often called black boxes, meaning that it is not so clear what is happening
inside. Furthermore, neural networks tend to be more difficult to train and for tabular data,
which is the type of structured data that you will typically encounter, gradient-boosted decision
trees tend to perform better. Nevertheless, since neural networks are what enabled many of
the recent advances in AI, they are an important topic to cover, even if it is only to better
understand what has been driving recent innovations.

It is common to represent neural networks as directed graphs. Figure 5.1 shows a feedforward
neural network with one hidden layer, 𝑁 = 2 inputs, 𝑀 = 3 neurons in the hidden layer, and
a single output. The input layer is connected to the hidden layer, which is connected to the
output layer. For simplicity, we will mainly work with neural networks that are feedforward
(i.e. their graphs are acyclical), with dense layers (i.e. each layer is fully connected to the
previous), and without connections that skip layers.

As we will see later on, under certain (relatively weak) conditions

• Neural networks are universal approximators (can approximate any (Borel measurable)
function)
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Figure 5.1: A Feedforward Neural Network with One Hidden Layer

• Neural networks break the curse of dimensionality (can handle very high dimensional
functions)

This makes them interesting for a wide range of fields in economics, e.g., quantitative macroeco-
nomics or econometrics. However, neural networks are not a magic bullet, and there are some
downsides in terms of the large data requirements, interpretability and training difficulty.

5.1.1 Origins of the Term “Neural Network”

Figure 5.2: A biological neuron (Source: Wikipedia)

The term “neural network” originates in attempts to find mathematical representations of
information processing in biological systems (Bishop 2006). Although biological neurons
provided the initial inspiration, the artificial neurons used in modern machine learning bear
only a superficial resemblance to their biological counterparts. The biological analogy can
be helpful when first learning about neural networks, but it should not be taken too literally.
Figure 5.2 shows a biological neuron for reference.
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5.2 An Artificial Neuron
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Figure 5.3: Artificial Neuron

Artificial neurons are the basic building blocks of neural networks. Figure 5.3 shows a single
artificial neuron. The 𝑁 inputs denoted 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)′ are linearly combined into 𝑧 using
weights 𝑤 and bias 𝑏

𝑧 = 𝑏 +
𝑁

∑
𝑖=1

𝑤𝑖𝑥𝑖 =
𝑁

∑
𝑖=0

𝑤𝑖𝑥𝑖

where we defined an additional input 𝑥0 = 1 and 𝑤0 = 𝑏.

The linear combination 𝑧 is transformed using an activation function 𝜙(𝑧).

𝑎 = 𝜙(𝑧) = 𝜙 (
𝑁

∑
𝑖=0

𝑤𝑖𝑥𝑖)

The activation function introduces non-linearity into the neural network and allows it to
learn highly non-linear functions. The particular choice of activation function depends on the
application.

This should look familiar to you already. If we set 𝜙(𝑧) = 𝑧, we get a linear regression model
and if we set 𝜙(𝑧) = 1

1+𝑒−𝑧 , we get a logistic regression model. This is because the basic building
block, the artificial neuron, is a generalized linear model.

5.2.1 Activation Functions

Common activation functions include

• Sigmoid: 𝜙(𝑧) = 1
1+𝑒−𝑧

• Hyperbolic tangent: 𝜙(𝑧) = tanh(𝑧)
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Figure 5.4: Activation Functions

• Rectified linear unit (ReLU): 𝜙(𝑧) = max(0, 𝑧)
• Softplus: 𝜙(𝑧) = log(1 + 𝑒𝑧)

ReLU has become popular in deep neural networks in recent years because of its good per-
formance in these applications. Since economic problems usually involve smooth functions,
softplus can be a good alternative.

5.2.2 A Special Case: Perceptron

Perceptrons were developed in the 1950s and have only one artificial neuron. Perceptrons use a
step function as an activation function

𝜙(𝑧) = {
1 if 𝑧 ≥ 0
0 otherwise ,

Perceptrons can be used for basic classification. However, the step function is usually not used
in neural networks because it is not differentiable at 𝑧 = 0 and zero everywhere else. This
makes it unsuitable for the back-propagation algorithm, which is used for determining the
network weights.

INFO Mini-Exercise

What would the decision boundary of a perceptron look like if we have two inputs 𝑥1 and
𝑥2 and the weights 𝑤1 = 1, 𝑤2 = 1, and 𝑏 = −1?
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5.3 Building a Neural Network from Artificial Neurons

We can build a neural network by stacking multiple artificial neurons. For this reason, it is
sometimes also called a multilayer perceptron (MLP). A neural network with a single
hidden layer is a linear combination of 𝑀 artificial neurons 𝑎𝑗

𝑎𝑗 = 𝜙(𝑧𝑗) = 𝜙 (𝑏1
𝑗 +

𝑁
∑
𝑖=1

𝑤1
𝑗𝑖𝑥𝑖)

with the output defined as

𝑔(𝑥; 𝑤) = 𝑏2 +
𝑀

∑
𝑗=1

𝑤2
𝑗 𝑎𝑗

where 𝑁 is the number of inputs, 𝑀 is the number of neurons in the hidden layer, and 𝑤 are
the weights and biases of the network. The width of the neural network is 𝑀.

Figure 5.5 shows a feedforward neural network with a single hidden layer, 𝑁 = 2 inputs, 𝑀 = 3
neurons in the hidden layer, and a single output. Note that the biases can be thought of as
additional weights that are multiplied by a constant input of 1.
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ŷ
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b2, w2

Figure 5.5: A Feedforward Neural Network with One Hidden Layer (Biases shown explicitly)

5.4 Relation to Linear Regression

Note that if we use a linear activation function, e.g. 𝜙(𝑥) = 𝑥, the neural network collapses
to a linear regression
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𝑦 ≅ 𝑔(𝑥; 𝑤) = 𝑤̃0 +
𝑁

∑
𝑖=1

𝑤̃𝑖𝑥𝑖

with appropriately defined regression coefficients 𝑤̃.

Recall that in our description of Figure 3.1 we argued that a machine learning algorithm would
automatically turn the slider to find the best fit. This is exactly what the training algorithm
has to do to train a neural network.

5.5 A Simple Example

Suppose we want to approximate 𝑓(𝑥) = exp(𝑥)−𝑥3 with 3 neurons. The approximation might
be

̂𝑓(𝑥) = 𝑎1 + 𝑎2 − 𝑎3

where

𝑎1 = 𝑚𝑎𝑥(0, −3𝑥 − 1.5)

𝑎2 = 𝑚𝑎𝑥(0, 𝑥 + 1)

𝑎3 = 𝑚𝑎𝑥(0, 3𝑥 − 3)

Our neural network in this case uses ReLU activation functions and has all weights equal to
one in the output layer. Figure 5.6 shows the admittedly poor approximation of 𝑓(𝑥) by ̂𝑓(𝑥)
using this neural network. Given the piecewise linear nature of the ReLU activation function
and the low number of neurons, the approximation is not very good. However, with more
neurons, we could get a better approximation.

The HTML version of these notes shows an interactive version of Figure 5.6 where you can
adjust the weights of the neural network to approximate a simple dataset. As you can see
there, it is quite tricky to find parameters that approximate the function well. This is where
the training algorithm comes in. It will automatically adjust the weights to minimize a loss
function.
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Figure 5.6: Approximation by a Neural Network

INFO TensorFlow Playground

If you want to play around with neural networks, you can use the TensorFlow Playground:
https://playground.tensorflow.org. It is a web-based tool that allows you to experiment
with neural networks and see how they learn. Figure 5.7 shows the interface of the
TensorFlow Playground.

Figure 5.7: TensorFlow Playground
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Figure 5.8: Deep Neural Network

5.6 Deep Neural Networks

Deep neural networks have more than one hidden layer. The number of hidden layers is
also called the depth of the neural network. Deep neural networks can model more complex
relationships. For simple function approximation, a single hidden layer is sufficient. Figure 5.8
shows a deep neural network with two hidden layers.

The first hidden layer consists of 𝑀1 artificial neurons with inputs 𝑥1, 𝑥2, … , 𝑥𝑁

𝑎1
𝑗 = 𝜙 (𝑏1

𝑗 +
𝑁

∑
𝑖=1

𝑤1
𝑗𝑖𝑥𝑖)

The second hidden layer consists of 𝑀2 artificial neurons with inputs 𝑎1
1, 𝑎1

2, … , 𝑎1
𝑀1

𝑎2
𝑘 = 𝜙 (𝑏2

𝑘 +
𝑀1

∑
𝑗=1

𝑤2
𝑘𝑗𝑎1

𝑗 )

After 𝑄 hidden layers, the output is defined as

𝑦 ≅ 𝑔(𝑥; 𝑤) = 𝑏𝑄+1 +
𝑀𝑄

∑
𝑗=1

𝑤𝑄+1
𝑗 𝑎𝑄

𝑗

Note that the activation functions do not need to be the same everywhere. In principle, we
could vary the activation functions even within a layer.
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5.7 Universal Approximation and the Curse of Dimensionality

Recall that we want to approximate an unknown function in supervised learning tasks

𝑦 = 𝑓(𝑥)

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝐾)′ and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)′ are vectors. The function 𝑓(𝑥) could stand
for many different functions in economics (e.g. a value function, a policy function, a conditional
expectation, a classifier, …).

It turns out that neural networks are universal approximators and break the curse of
dimensionality. The universal approximation theorem by Hornik, Stinchcombe, and White
(1989) states:

A neural network with at least one hidden layer can approximate any Borel measur-
able function mapping finite-dimensional spaces to any desired degree of accuracy.

Breaking the curse of dimensionality (Barron, 1993)

A one-layer NN achieves integrated square errors of order 𝑂(1/𝑀), where 𝑀 is the
number of nodes. In comparison, for series approximations, the integrated square
error is of order 𝑂(1/(𝑀2/𝑁)) where 𝑁 is the dimensions of the function to be
approximated.

5.8 Training a Neural Network: Determining Weights and
Biases

We have not yet discussed how to determine the weights and biases. The weights and biases 𝑤
are selected to minimize a loss function

𝐸(𝑤; 𝑋, 𝑌 ) = 1
𝑁

𝑁
∑
𝑛=1

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛)

where 𝑁 refers to the number of input-output pairs that we use for training and 𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛)
refers to the loss of an individual pair 𝑛.

For notational simplicity, I will write 𝐸(𝑤) and 𝐸𝑛(𝑤) in the following or in some cases even
omit argument 𝑤.
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5.8.1 Choice of Loss Function

The choice of loss function depends on the problem at hand. In regressions, one often uses a
mean squared error (MSE) loss

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛) = 1
2

‖𝑔 (𝑥𝑛; 𝑤) − 𝑦𝑛‖2

In classification problems, one often uses a cross-entropy loss

𝐸𝑛(𝑤; 𝑥𝑛, 𝑦𝑛) =
𝐾

∑
𝑘=1

𝑦𝑛𝑘 log(𝑔𝑘(𝑥𝑛; 𝑤))

where 𝑘 refers to 𝑘th class (or 𝑘th element) in the output vector.

5.8.2 Gradient Descent
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Figure 5.9: Gradient Descent

The weights and biases are determined by minimizing the loss function using a gradient
descent algorithm. The basic idea is to compute how the loss changes with the weights 𝑤
and step into the direction that reduces the loss. Figure 5.9 shows a simple example of a loss
function and the gradient descent algorithm. The basic steps of the algorithm are
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1. Initialize weights (e.g. draw from Gaussian distribution)

𝑤(0) ∼ 𝑁(0, 𝐼)

2. Compute the gradient of the loss function with respect to weights

∇𝐸(𝑤(𝑖)) = 1
𝑁

𝑁
∑
𝑛=1

∇𝐸𝑛 (𝑤(𝑖))

3. Update weights (make a small step in the direction of the negative gradient)

𝑤(𝑖+1) = 𝑤(𝑖) − 𝜂∇𝐸 (𝑤(𝑖))

where 𝜂 > 0 is the learning rate.

4. Repeat Steps 2 and 3 until a terminal condition (e.g. fixed number of iterations) is
reached.

If we use the batch gradient descent algorithm described above, we might get stuck in a local
minimum. To avoid this, we can use

• Stochastic gradient descent: Use only a single observation to compute the gradient
and update the weights for each observation

𝑤(𝑖+1) = 𝑤(𝑖) − 𝜂∇𝐸𝑛 (𝑤(𝑖))

• Minibatch gradient descent: Use a small batch of observations (e.g. 32) to compute
the gradient and update the weights for each minibatch

These algorithms are less likely to get stuck in a shallow local minimum of the loss function
because they are “noisier”. Figure 5.10 shows a comparison of the different gradient descent
algorithms. Minibatch gradient descent is probably the most commonly used and is also what
we will be using in our implementation in Python.

5.8.3 Backpropagation Algorithm

Computing the gradient seems to be a daunting task since a weight in the first layer in a
deep neural network affects the loss function potentially through thousands of “paths”. The
backpropagation algorithm (Rumelhart et al., 1986) provides an efficient way to evaluate
the gradient. The basic idea is to go backward through the network to evaluate the gradient as
shown in Figure 5.11. If you are interested in the details, I recommend reading the notes by
Nielsen (2019).
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Figure 5.10: Comparison of Gradient Descent Types (blue: Full Batch, red: Minibatch, orange:
Stochastic)
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Figure 5.11: Backpropagation Algorithm
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5.9 Practical Considerations

From a practical perspective, there are many more things to consider. Often times it’s beneficial
to do some (or all) of the following

• Input/output normalization: (e.g. to have unit variance and mean zero) can improve the
performance of the NN

• Check for overfitting: by splitting the dataset into a training dataset and a test dataset
• Regularization: to avoid overfitting (e.g., add a term to loss function that penalizes large

weights)
• Adjust the learning rate: 𝜂 during training

We have already discussed some of these topics in the context of other machine learning
algorithms.

5.10 More Advanced Neural Architectures

Neural networks come in many different architectures. So far, we have only discussed feedfor-
ward neural networks. Other popular architectures include

• Convolutional neural networks (CNNs): Designed for grid-like data such as images.
CNNs use convolutional layers that apply small filters sliding across the input to detect
local patterns like edges and textures. Early layers detect simple features, while deeper
layers combine these into complex patterns (e.g., faces, objects). Applications include
image classification, medical imaging, facial recognition, and self-driving cars.

• Recurrent neural networks (RNNs): Designed for sequential data where order
matters. Unlike feedforward networks, RNNs have connections that loop back, maintaining
a “memory” of previous inputs through a hidden state. Variants like Long Short-Term
Memory (LSTM) networks address the “vanishing gradient” problem for long sequences.
Applications include time series forecasting, speech recognition, and sentiment analysis.

• Transformer networks: Use an attention mechanism that allows the model to weigh
the importance of different parts of the input when producing each output. Unlike
RNNs, Transformers process all positions simultaneously, making them faster to train.
Applications include large language models (GPT, Claude), machine translation, and
even protein structure prediction (AlphaFold).

We will have a closer look at transformer networks in the chapter on generative AI since
transformers were one of the key innovations that made the recent advances in this field
possible.
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5.11 Python Implementation

Let’s have a look at how to implement a neural network in Python.

5.11.1 Implementing the Feedforward Part of a Neural Network

As a small programming exercise and to improve our understanding of neural networks, let’s
implement the feedforward part of a neural network from scratch. We will have to calculate
the output of the network for some given weights and biases, as well as some inputs. Let’s start
by importing the necessary libraries

import numpy as np

Next, we define the activation function for which we use the sigmoid function

def activation_function(x):
return 1/(1+np.exp(-x)) # sigmoid function

Now, we define the feedforward function which calculates the output of the neural network
given some inputs, weights, and biases. The function takes the inputs, weights, and biases as
arguments and returns the output of the network

def feedforward(inputs, w1, w2, b1, b2):

# Compute the pre-activation values for the first layer
z = b1 + np.matmul(w1, inputs)

# Compute the post-activation values for the first layer
a = activation_function(z)

# Combine the post-activation values of the first layer to an output
g = b2 + np.matmul(w2, a)

return g

Mathematically, the function computes the following

𝑧 = 𝑏1 + 𝑤1𝑥
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𝑎 = 𝜙(𝑧)

𝑔 = 𝑏2 + 𝑤2𝑎

and returns 𝑔 at the end. We have written this using matrix notation to make it more compact.
Remember that node 𝑗 in the hidden layer is given by

𝑧𝑗 = 𝑏1
𝑗 +

𝑁
∑
𝑖=1

𝑤1
𝑗𝑖𝑥𝑖

𝑎𝑗 = 𝜙(𝑧𝑗)

and the output of the network is given by

𝑔(𝑥; 𝑤) = 𝑏2 +
𝑀

∑
𝑗=1

𝑤2
𝑗 𝑎𝑗.

Let’s test the function with some example inputs, weights and biases

# Define the weights and biases
w1 = np.array([[0.1, 0.2], [0.3, 0.4]]) # 2x2 matrix
w2 = np.array([0.5, 0.6]) # 1-d vector
b1 = np.array([0.1, 0.2]) # 1-d vector
b2 = 0.3

# Define the inputs
inputs = np.array([1, 2]) # 1-d vector

# Compute the output of the network
feedforward(inputs, w1, w2, b1, b2)

np.float64(1.0943291429384328)

To operationalize this, we would also need to define a loss function and an optimization
algorithm to update the weights and biases. However, this is beyond the scope of this course.
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5.11.2 Using Neural Networks in scikit-learn

Scikit-learn provides a simple interface to use neural networks. However, it is not as flexible as
the more commonly used PyTorch or TensorFlow. We can reuse the dataset of credit card
transactions from Kaggle.com to demonstrate how to use neural networks in scikit-learn.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score,

recall_score, precision_score, roc_curve↪

pd.set_option('display.max_columns', 50) # Display up to 50 columns
from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/card_transdata.csv'):

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/dhanushnarayan ⌋

anr/credit-card-fraud'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

Dataset already downloaded!
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# Load the data
df = pd.read_csv('data/card_transdata.csv')

# Split the data into training and test sets
X = df.drop('fraud', axis=1) # All variables except `fraud`
y = df['fraud'] # Only our fraud variables
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,

test_size = 0.3, random_state = 42)↪

# Scale the features
def scale_features(scaler, df, col_names, only_transform=False):

# Extract the features we want to scale
features = df[col_names]

# Fit the scaler to the features and transform them
if only_transform:

features = scaler.transform(features.values)
else:

features = scaler.fit_transform(features.values)

# Replace the original features with the scaled features
df[col_names] = features

col_names = ['distance_from_home', 'distance_from_last_transaction',
'ratio_to_median_purchase_price']↪

scaler = StandardScaler()
scale_features(scaler, X_train, col_names)
scale_features(scaler, X_test, col_names, only_transform=True)

Recall that the target variable 𝑦 is fraud, which indicates whether the transaction is fraudulent
or not. The other variables are the features 𝑥 of the transactions.

To use a neural network for a classification task, we can use the MLPClassifier class from
scikit-learn. The following code snippet shows how to use a neural network with one hidden
layer with 16 nodes

clf = MLPClassifier(hidden_layer_sizes=(16,), random_state=42,
verbose=False).fit(X_train, y_train)↪

If you would like to use a neural network with multiple hidden layers, you can specify the
number of nodes per hidden layer using the hidden_layer_sizes parameter. For example,
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the following code snippet shows how to use a neural network with two hidden layers, one with
5 nodes and the other with 4 nodes

clf = MLPClassifier(alpha=1e-5, hidden_layer_sizes=(5,4),
activation='logistic', random_state=42).fit(X_train, y_train)↪

Note that the alpha parameter specifies the regularization strength, the activation parameter
specifies the activation function (by default it uses relu) and the random_state parameter
specifies the seed for the random number generator (useful for reproducible results).

We can check the loss curve to see how the neural network loss declined during training

plt.plot(clf.loss_curve_)
plt.title("Loss Curve", fontsize=14)
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.show()
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We can then use the same way to evaluate the neural network performance as we did for the
other ML models
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y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

Accuracy: 0.99748

print(f"Precision: {precision_score(y_test, y_pred)}")

Precision: 0.9916592655519945

print(f"Recall: {recall_score(y_test, y_pred)}")

Recall: 0.9794058197627855

print(f"ROC AUC: {roc_auc_score(y_test, y_proba[:, 1])}")

ROC AUC: 0.9998789639015943

The neural network performs substantially better than the logistic regression. As in the case of
the tree-based methods, the ROC AUC score is much closer to the maximum value of 1 and we
have an almost perfect classifier

# Compute the ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_proba[:, 1])

# Plot the ROC curve
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('ROC Curve')
plt.show()
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Let’s also check the confusion matrix to see where we still make mistakes

conf_mat = confusion_matrix(y_test, y_pred, labels=[1, 0]).transpose() #
Transpose the sklearn confusion matrix to match the convention in the
lecture

↪

↪

sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='g',
xticklabels=['Fraud', 'No Fraud'], yticklabels=['Fraud', 'No Fraud'])↪

plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()
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There are around 270 false negatives, i.e., a fraudulent transaction that we did not detect.
There are also around 980 false positives, i.e., “false alarms”, where non-fraudulent transactions
were classified as fraudulent.

5.11.3 Using Neural Networks in PyTorch

While it is possible to use neural networks in scikit-learn, it is more common to use PyTorch
or TensorFlow for neural networks. PyTorch is a popular deep-learning library that is widely
used in academia and industry. In this section, we will show how to use PyTorch to build a
simple neural network for the same credit card fraud detection task.

Exclamation-Triangle Feel Free to Skip This Section

This section might be a bit more challenging than what we have looked at previously. If
you think that you are not ready for this, feel free to skip this section. This is mainly
meant to be a starting point for those who are interested in learning more about neural
networks.
For a more in-depth introduction to PyTorch, I recommend that you check out the official
PyTorch tutorials. This section, in particular, builds on the Learning PyTorch with
Examples tutorial.

Let’s start by importing the necessary libraries
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import torch
from torch.utils.data import DataLoader, TensorDataset

Then, let’s prepare the data for PyTorch. We need to convert the data in our DataFrame to
PyTorch tensors

X_train_tensor = torch.tensor(X_train.values, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train.values, dtype=torch.long)

Note that we also converted the input values to float32 for improved training speed and the
target values to long which is a type of integer (remember our target y can only take values
zero or one). Next, we need to create a DataLoader object to load the data in mini-batches
during the training process

dataset = TensorDataset(X_train_tensor, y_train_tensor)
dataloader = DataLoader(dataset, batch_size=200, shuffle=True)
dataset_size = len(dataloader.dataset)

Next, we define the neural network model using the nn module from PyTorch

model = torch.nn.Sequential(
torch.nn.Linear(7, 16), # 7 input features, 16 nodes in the hidden layer
torch.nn.ReLU(), # ReLU activation function
torch.nn.Linear(16, 2) # 16 nodes in the hidden layer, 2 output nodes
(fraud or no fraud)↪

)

We also need to define the loss function and the optimizer. We will use the cross-entropy loss
function and the Adam optimizer

loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-5)

# Adam optimizer with learning rate of 0.001 and L2 regularization
(analogous to alpha in scikit-learn)

↪

↪

We can now train the neural network using the following code snippet
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for epoch in range(80):

# Loop over batches in an epoch using DataLoader
for id_batch, (X_batch, y_batch) in enumerate(dataloader):

# Compute the predicted y using the neural network model with the
current weights↪

y_batch_pred = model(X_batch)

# Compute the loss
loss = loss_fn(y_batch_pred, y_batch)

# Reset the gradients of the loss function to zero
optimizer.zero_grad()

# Compute the gradient of the loss with respect to model parameters
loss.backward()

# Update the weights by taking a "step" in the direction that reduces
the loss↪

optimizer.step()

if epoch % 10 == 9:
print(f"Epoch {epoch} loss: {loss.item():>7f}")

Epoch 9 loss: 0.013850
Epoch 19 loss: 0.013232
Epoch 29 loss: 0.003188
Epoch 39 loss: 0.001493
Epoch 49 loss: 0.008496
Epoch 59 loss: 0.012090
Epoch 69 loss: 0.008941
Epoch 79 loss: 0.006905

Note that here we are updating the model weights for each mini-batch in the dataset and go
over the whole dataset 80 times (epochs). We print the loss every 10 epochs to see how the
loss decreases over time.

The following snippet shows how to use full-batch gradient descent instead of mini-batch
gradient descent

for epoch in range(2000):
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# Compute the predicted y using the neural network model with the current
weights↪

y_epoch_pred = model(X_train_tensor)

# Compute the loss
loss = loss_fn(y_epoch_pred, y_train_tensor)

# Reset the gradients of the loss function to zero
optimizer.zero_grad()

# Compute the gradient of the loss with respect to model parameters
loss.backward()

# Update the weights by taking a "step" in the direction that reduces the
loss↪

optimizer.step()

# Print the loss every 100 epochs
if epoch % 100 == 99:

print(f"Epoch {epoch} loss: {loss.item():>7f}")

Note that in this version we are updating the model weights 2000 times (epochs) and printing
the loss every 100 epochs. We can now evaluate the model on the test set

X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32)
y_pred = torch.argmax(model(X_test_tensor), dim=1).numpy()

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

Accuracy: 0.99572

print(f"Precision: {precision_score(y_test, y_pred)}")

Precision: 0.9862719862719863

print(f"Recall: {recall_score(y_test, y_pred)}")

Recall: 0.9644559704054002
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Note that for simplicity we are reusing the scikit-learn metrics to evaluate the model.

However, our neural network trained in PyTorch does not perform exactly the same as the
neural network trained in scikit-learn. This is likely because of different hyperparameters or
different initializations of the weights. In practice, it is common to experiment with different
hyperparameters to find the best model or to use grid search and cross-validation to try many
values and find the best-performing ones.

5.11.4 Conclusions

In this section, we have learned about neural networks, which are the foundation of deep
learning. We have seen how to implement parts of a simple neural network from scratch and
how to use neural networks in scikit-learn and PyTorch.
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Chapter 6

Practice Session I

The application in this practice session is inspired by the empirical example in “Measuring the
model risk-adjusted performance of machine learning algorithms in credit default prediction”
by Alonso Robisco and Carbó Martínez (2022). However, since we are not interested in model
risk-adjusted performance, the application will purely focus on the implementation of machine
learning algorithms for loan default prediction.

6.1 Problem Setup

The dataset that we will be using was used in the Kaggle competition “Give Me Some Credit”.
The description of the competition reads as follows:

Banks play a crucial role in market economies. They decide who can get finance
and on what terms and can make or break investment decisions. For markets and
society to function, individuals and companies need access to credit.

Credit scoring algorithms, which make a guess at the probability of default, are
the method banks use to determine whether or not a loan should be granted. This
competition requires participants to improve on the state of the art in credit scoring,
by predicting the probability that somebody will experience financial distress in
the next two years.

The goal of this competition is to build a model that borrowers can use to help
make the best financial decisions.

Historical data are provided on 250,000 borrowers and the prize pool is $5,000
($3,000 for first, $1,500 for second and $500 for third).

Unfortunately, there won’t be any prize money today. However, the experience that you can
gain from working through an application like this can be invaluable. So, in a way, you are still
winning!
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6.2 Dataset

Let’s download the dataset automatically, unzip it, and place it in a folder called data if you
haven’t done so already

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile
import os.path

# Check if the file exists
if not os.path.isfile('data/Data Dictionary.xls') or not

os.path.isfile('data/cs-training.csv'):↪

print('Downloading dataset...')

# Define the dataset to be downloaded
zipurl = 'https://www.kaggle.com/api/v1/datasets/download/brycecf/give-m ⌋

e-some-credit-dataset'↪

# Download and unzip the dataset in the data folder
with urlopen(zipurl) as zipresp:

with ZipFile(BytesIO(zipresp.read())) as zfile:
zfile.extractall('data')

print('DONE!')

else:

print('Dataset already downloaded!')

Dataset already downloaded!

Then, we can have a look at the data dictionary that is provided with the dataset. This will
give us an idea of the variables that are available in the dataset and what they represent

import pandas as pd
data_dict = pd.read_excel('data/Data Dictionary.xls', header=1)
data_dict.style.hide()
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Table 6.1

Variable Name Description Type

SeriousDlqin2yrs Person experienced 90 days past due delinquency or worse Y/N
RevolvingUtilizationOfUnsecuredLines Total balance on credit cards and personal lines of credit except real estate and no installment debt like car loans divided by the sum of credit limits percentage
age Age of borrower in years integer
NumberOfTime30-59DaysPastDueNotWorse Number of times borrower has been 30-59 days past due but no worse in the last 2 years. integer
DebtRatio Monthly debt payments, alimony,living costs divided by monthy gross income percentage
MonthlyIncome Monthly income real
NumberOfOpenCreditLinesAndLoans Number of Open loans (installment like car loan or mortgage) and Lines of credit (e.g. credit cards) integer
NumberOfTimes90DaysLate Number of times borrower has been 90 days or more past due. integer
NumberRealEstateLoansOrLines Number of mortgage and real estate loans including home equity lines of credit integer
NumberOfTime60-89DaysPastDueNotWorse Number of times borrower has been 60-89 days past due but no worse in the last 2 years. integer
NumberOfDependents Number of dependents in family excluding themselves (spouse, children etc.) integer

The variable 𝑦 that we want to predict is SeriousDlqin2yrs which indicates whether a person
has been 90 days past due on a loan payment (serious delinquency) in the past two years. This
target variable is 1 if the loan defaults (i.e., serious delinquency occurred) and 0 if the loan
does not default (i.e., no serious delinquency occurred). The other variables are features that
we can use to predict this target variable such as the age of the borrower and the monthly
income of the borrower.

6.3 Putting the Problem into the Context of the Course

Given the description of the competition and the dataset, we can see that this is a supervised
learning problem. We have a target variable that we want to predict, and we have features
that we can use to predict this target variable. The target variable is binary, i.e., it can take
two values: 0 or 1. The value 0 indicates that the loan will not default, while the value 1
indicates that the loan will default. Thus, this is a binary classification problem.

6.4 Setting up the Environment

We will start by setting up the environment by importing the necessary libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
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and loading the dataset

df = pd.read_csv('data/cs-training.csv')

6.5 Exercises

Note that the exercises build on each other. You can sometimes skip exercises but the results
for later exercises will depend on the previous ones. If you get stuck, you can skip to the next
exercise and try to come back to the previous one later.

6.5.1 Exercise 1: Familiarization with the Dataset

Tasks:

1. Display the first 5 rows of the dataset. What do you notice about the column names?
2. There appears to be an unnecessary index column. Identify it and remove it from the

DataFrame
3. Use .info() to check the data types and identify which columns have missing values

Hints:

• The .head() method shows the first rows
• Look for columns that seem to duplicate the index
• The axis parameter in .drop() specifies whether you’re dropping rows or columns

# Your code here. Add additional code cells as needed.

6.5.2 Exercise 2: Understanding the Target Variable

Tasks:

1. What is the proportion of defaulted vs non-defaulted loans in the dataset? Use
value_counts(normalize=True)

2. Based on this distribution, would you say the dataset is balanced or imbalanced?
3. Why might class imbalance be problematic for machine learning? What evaluation metrics

should we be careful about?

Hints:

• The target variable is SeriousDlqin2yrs
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• Think about what accuracy would be if a model just predicted the majority class

# Your code here. Add additional code cells as needed.

6.5.3 Exercise 3: Handling Missing Values and Data Quality Issues

Tasks:

1. Use .dropna() combined with value_counts() to check if dropping missing values
significantly changes the target variable distribution

2. Drop the rows with missing values for the rest of the exercises.
3. How many rows were dropped due to missing values?
4. Verify that there are no missing values remaining in the dataset.
5. Check for duplicate rows. How many are there? Should you remove them?

Hints:

• Use df.loc[df.isna().any(axis=1)] to select rows with any missing values
• Pay attention to the mean and standard deviation differences

INFO Note

Note that in a real application, you would want to carefully consider how to handle missing
data rather than just dropping rows. Imputation methods or models that can handle
missing data directly might be more appropriate depending on the context. Furthermore,
in this specific dataset, dropping some of the missing values also removes some of the other
data quality issues by chance. In practice, you would want to investigate and address
these issues separately.

# Your code here. Add additional code cells as needed.

6.5.4 Exercise 4: Exploratory Data Analysis

Tasks:

1. Create a pie chart (or histogram) showing the distribution of the target variable in your
cleaned dataset

2. Generate a pair plot for age, MonthlyIncome, DebtRatio, and SeriousDlqin2yrs using
seaborn’s pairplot() with hue='SeriousDlqin2yrs'

3. Calculate and visualize correlation matrices using a heatmap
4. Which features appear most correlated with loan default?
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5. Are there any features that are highly correlated with each other? What issues could this
cause?

Hints:

• Use sns.pairplot() with the hue parameter for coloring by class
• Use df.corr() for Pearson correlation
• sns.heatmap() can visualize correlation matrices
• Use np.triu() to create a mask for the upper triangle

# Your code here. Add additional code cells as needed.

6.5.5 Exercise 5: Preparing Data for Machine Learning Algorithms

Tasks:

1. Separate features (X) from the target variable (y)
2. Split the data into training (80%) and test (20%) sets using train_test_split. Use

stratify=y to maintain class proportions and random_state=42 for reproducibility
3. Apply MinMaxScaler to normalize the features. Important: Fit the scaler only on

training data, then transform both training and test data

Hints:

• Use df.drop('column_name', axis=1) for features
• The stratify parameter ensures balanced splits
• Fitting on test data causes “data leakage” - avoid this!
• Create a helper function for scaling if you want cleaner code

# Your code here. Add additional code cells as needed.

6.5.6 Exercise 6: Defining Evaluation Metrics

Tasks:

1. Write a function evaluate_model(clf, X_train, y_train, X_test, y_test,
label='') that:

• Computes predictions and predicted probabilities
• Prints Accuracy, Precision, Recall, and ROC AUC for both training and test sets
• Plots the ROC curve for both training and test sets

2. Why is it important to evaluate on both training and test data?
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3. Given our imbalanced dataset, which metric(s) should we focus on and why?

Hints:

• Use clf.predict() for class predictions and clf.predict_proba() for probabilities
• Import metrics from sklearn.metrics: accuracy_score, precision_score,

recall_score, roc_auc_score, roc_curve
• Plot both curves on the same figure for comparison
• Add a diagonal reference line for the ROC plot
• Use label parameter to differentiate models in outputs, e.g., label='Logistic

Regression'

# Your code here. Add additional code cells as needed.

6.5.7 Exercise 7: Training Classification Models

Tasks:

Train the following models and evaluate each using your evaluation function:

1. Logistic Regression: Use penalty=None, solver='lbfgs', max_iter=5000
2. Decision Tree: Use max_depth=7
3. Random Forest: Use max_depth=20, n_estimators=100
4. XGBoost: Use max_depth=5, n_estimators=40, random_state=0
5. Neural Network: Use MLPClassifier with activation='relu', solver='adam',

hidden_layer_sizes=(300, 200, 100), max_iter=300, random_state=42

For each model:

• Fit on training data
• Evaluate using your evaluation function
• Note the training vs test performance

Hints:

• Import from: sklearn.linear_model, sklearn.tree, sklearn.ensemble, xgboost
• Use .fit(X_train, y_train) to train each model
• Watch for signs of overfitting (training » test performance)
• Training the neural network may take several minutes

# Your code here. Add additional code cells as needed.
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6.5.8 Exercise 8: Results Comparison

Tasks:

1. Create a DataFrame comparing all models with columns: Model, ROC AUC (Train),
ROC AUC (Test)

2. Which model performed best on the test set?
3. Which model showed the largest gap between training and test performance? What does

this suggest?

Hints:

• Use pd.DataFrame() with a dictionary
• The gap between train/test performance indicates overfitting

# Your code here. Add additional code cells as needed.

6.5.9 Exercise 9: Feature Engineering

Tasks:

1. Create squared versions of all features and add them to the dataset (use .pow(2) and
.add_suffix('_sq'))

2. Re-split and re-scale the data with the new features
3. Retrain all models with the expanded feature set
4. Compare the new results with the original. Did feature engineering help?

Optional: Add a Logistic Regression with L1 (LASSO) penalty using penalty='l1' and
solver='liblinear'. How does it perform?

Hints:

• Use X.assign(**X.pow(2).add_suffix('_sq')) for compact feature creation
• Remember to fit a new scaler on the new training data
• LASSO can help with feature selection when you have many features

# Your code here. Add additional code cells as needed.
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6.5.10 Exercise 10: Reflection and Discussion

Tasks:

1. What additional steps could improve model performance (e.g., hyperparameter tuning,
handling class imbalance, more feature engineering)?

2. In a real banking context, would you prefer a model with higher precision or higher recall?
Why?

3. What are the ethical considerations when deploying such a model for loan decisions?

Hints:

• No code required; reflect on practical and ethical aspects
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Appendix A

Unsupervised Learning

In this chapter, we will introduce some unsupervised learning methods that are commonly used
in machine learning.

A.1 K-means Clustering

K-means is a method that is used for finding clusters in a set of unlabeled data meaning that
it is an unsupervised learning method. For the algorithm to work, one has to choose a fixed
number of clusters 𝐾 for which the algorithm will then try to find the cluster centers (i.e., the
means) using an iterative procedure. The basic algorithm proceeds as follows given a set of
initial guesses for the 𝐾 cluster centers:

1. Assign each data point to the nearest cluster center
2. Recompute the cluster centers as the mean of the data points assigned to each cluster

The algorithm iterates over these two steps until the cluster centers do not change or the change
is below a certain threshold. As an initial guess, one can use, for example, 𝐾 randomly chosen
observations as cluster centers.

We need some measure of disimilarity (or distance) to assign data points to the nearest
cluster center. The most common choice is the Euclidean distance. The squared Euclidean
distance between two points 𝑥 and 𝑦 in 𝑝-dimensional space is defined as

𝑑(𝑥𝑖, 𝑥𝑗) =
𝑝

∑
𝑛=1

(𝑥𝑖𝑛 − 𝑥𝑗𝑛)2 = ‖𝑥𝑖 − 𝑥𝑗‖2

where 𝑥𝑖𝑛 and 𝑥𝑗𝑛 are the 𝑛-th feature of the 𝑖-th and 𝑗-th observation in our dataset,
respectively.
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The objective function of the K-means algorithm is to minimize the sum of squared distances
between the data points and their respective cluster centers

min
𝐶,{𝑚𝑘}𝐾

𝑘=1

𝐾
∑
𝑘=1

∑
𝐶(𝑖)=𝑘

‖𝑥𝑖 − 𝑚𝑘‖2

where second sum sums up over all elements 𝑖 in cluster 𝑘 and 𝜇𝑘 is the cluster center of cluster
𝑘.

The K-means algorithm is sensitive to the initial choice of cluster centers. To mitigate
this, one can run the algorithm multiple times with different initial guesses and choose the
solution with the smallest objective function value.

The scale of the data can also have an impact on the clustering results. Therefore, it is often
recommended to standardize the data before applying the K-means algorithm. Furthermore,
the Euclidean distance is not well suited for binary or categorical data. Therefore, one
should only use the K-means algorithm for continuous data.

How to choose the number of clusters 𝐾? One can use the so-called elbow method
to find a suitable number of clusters. The elbow method plots the sum of squared distances
(i.e., the objective function of K-means) for different 𝐾. The idea is to choose the number of
clusters at the “elbow” of the curve, i.e., the point where the curve starts to flatten out. Note
that the curve starts to flatten out when adding more clusters does not significantly reduce the
sum of squared distances anymore. This usually happens to be the case when the number of
clusters exceeds the “true” number of clusters in the data. However, this is just a heuristic and
it might not always be easy to identify the “elbow” in the curve.
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Figure A.1: K-Means Clusters and Elbow Method
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Figure A.1 shows an example of the K-means clustering algorithm applied to a dataset with
3 clusters. The left-hand side shows the clusters found by the K-means algorithm, while the
right-hand side shows the elbow method to find the optimal number of clusters. The elbow
method suggests that the optimal number of clusters is 3, which is the true number of clusters
in the dataset.

267


	About this Course
	Learning Objectives
	Course Structure
	Prerequisites
	Useful Resources
	Software Installation Notes
	Anaconda Installation
	Creating a Conda Environment
	Installing VS Code
	Testing the Installation


	Foundations
	Introduction to AI and Big Data
	How is AI Relevant for You?
	Overview of Artificial Intelligence
	What is Machine Learning?
	Definition
	Relation of Machine Learning to Statistics and Econometrics

	The Role of Big Data
	History of Artificial Intelligence
	Broad Developments in AI
	Why has AI Become So Popular Recently?

	Types of Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Popular Practice Datasets

	Programming in Python
	Overview of Python
	What is Python?
	Why Python and Not Other Languages?
	Installation and Setup

	Development Environment
	Visual Studio Code (VSCode)
	Jupyter Notebooks
	Notebooks vs. Scripts
	Google Colab

	Python Fundamentals
	Variables
	Functions
	Conditional statements
	Loops
	Exercises

	Data Structures
	Lists
	Tuples
	Dictionaries
	Sets
	Ranges
	Mutable vs. Immutable Objects
	Exercises

	Object-Oriented Programming (OOP) Basics
	Classes and Objects
	Attributes and Methods
	Inheritance
	Why Use OOP?
	Exercises

	Essential Packages
	Scientific Computing: NumPy
	Data Management: Pandas
	Visualization: Matplotlib & Seaborn

	Working with Application Programming Interfaces (APIs)
	Banco de España's Statistics Web Service
	ECB Data Portal & Other SDMX APIs
	Fred API

	Good Practices
	Version Control with Git
	Virtual Environments and Package Management
	Code Organization and Documentation
	Error Handling and Debugging
	Using AI Tools for Coding



	Supervised Learning
	Basic Concepts in Supervised Learning
	Basic Supervised Learning Models
	Linear Regression in a ML Context
	Logistic Regression in a ML Context
	K-Nearest Neighbors

	Model Evaluation
	Regression Models
	Classification Models

	Generalization and Overfitting
	Bias-Variance Tradeoff
	Regularization
	Training, Validation, and Test Datasets
	Cross-Validation

	Python Implementation
	Data Exploration & Preprocessing
	Implementing Logistic Regression
	Implementing K-Nearest Neighbors
	Conclusions


	Decision Trees
	What is a Decision Tree?
	Terminology
	How To Grow a Tree
	Example: Classification Problem
	Stopping Criteria and Pruning a Tree

	Advantages and Disadvantages
	Ensemble Methods
	Random Forests
	Boosting
	Interpreting Ensemble Methods

	Python Implementation
	Data Preprocessing
	Implementing a Decision Tree Classifier
	Implementing a Random Forest Classifier
	Implementing a XGBoost Classifier
	Feature Importance
	Permutation Importance
	Conclusions


	Neural Networks
	What is a Neural Network?
	Origins of the Term ``Neural Network''

	An Artificial Neuron
	Activation Functions
	A Special Case: Perceptron

	Building a Neural Network from Artificial Neurons
	Relation to Linear Regression
	A Simple Example
	Deep Neural Networks
	Universal Approximation and the Curse of Dimensionality
	Training a Neural Network: Determining Weights and Biases
	Choice of Loss Function
	Gradient Descent
	Backpropagation Algorithm

	Practical Considerations
	More Advanced Neural Architectures
	Python Implementation
	Implementing the Feedforward Part of a Neural Network
	Using Neural Networks in scikit-learn
	Using Neural Networks in PyTorch
	Conclusions


	Practice Session I
	Problem Setup
	Dataset
	Putting the Problem into the Context of the Course
	Setting up the Environment
	Exercises
	Exercise 1: Familiarization with the Dataset
	Exercise 2: Understanding the Target Variable
	Exercise 3: Handling Missing Values and Data Quality Issues
	Exercise 4: Exploratory Data Analysis
	Exercise 5: Preparing Data for Machine Learning Algorithms
	Exercise 6: Defining Evaluation Metrics
	Exercise 7: Training Classification Models
	Exercise 8: Results Comparison
	Exercise 9: Feature Engineering
	Exercise 10: Reflection and Discussion



	Natural Language Processing
	Overview of Natural Language Processing (NLP)
	Classical NLP Approaches
	Practice Session II

	Generative AI
	Overview of Generative AI
	Large Language Models
	Practice Session III

	References
	Appendices
	Unsupervised Learning
	K-means Clustering



