{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with Application Programming Interfaces (APIs)\n", "\n", "Application Programming Interfaces (APIs) are a set of rules and protocols that allow different software applications to communicate with each other. They enable developers to access data and functionality from external services, libraries, or platforms without needing to understand the underlying code or infrastructure. Rather than downloading data files manually, APIs allow us to programmatically request and retrieve data directly from a web service.\n", "\n", "In this section, we will have a brief look at how to use some common APIs for economic data retrieval using Python. We will cover the following:\n", "\n", "- [Banco de España's Statistics Web Service](https://www.bde.es/webbe/en/estadisticas/recursos/api-estadisticas-bde.html)\n", "- [ECB Data Portal](https://data.ecb.europa.eu/help/api/overview)\n", "- [Fred API](https://fred.stlouisfed.org/docs/api/fred/) by the Federal Reserve Bank of St. Louis\n", "\n", "These APIs provide access to a wide range of economic and financial data, including interest rates, exchange rates, inflation rates, GDP figures, and more. By using these APIs, we can automate the process of data retrieval, ensuring that we always have access to the most up-to-date information for our analyses. I highly recommend that you make use of APIs whenever possible to streamline your data collection process.\n", "\n", "### Banco de España's Statistics Web Service\n", "\n", "[Banco de España's Statistics Web Service](https://www.bde.es/webbe/en/estadisticas/recursos/api-estadisticas-bde.html) provides a way to programmatically retrieve data from the Banco de España's databases including data from [BIEST](https://app.bde.es/bie_www/bie_wwwias/xml/Arranque.html). Since Banco de España does not provide an official Python package to access their API, we can use the `requests` library to make HTTP requests and retrieve data in JSON (JavaScript Object Notation) format. We can then parse the JSON data and convert it into a Pandas DataFrame for further analysis. \n", "\n", "To this end, we first import the necessary libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:56.619161Z", "iopub.status.busy": "2026-01-19T18:20:56.618930Z", "iopub.status.idle": "2026-01-19T18:20:57.187099Z", "shell.execute_reply": "2026-01-19T18:20:57.186480Z" } }, "outputs": [], "source": [ "import requests\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we define a class to interact with the Banco de España API^[Note that creating the class is not strictly necessary, but it helps to organize the code.]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:57.190091Z", "iopub.status.busy": "2026-01-19T18:20:57.189778Z", "iopub.status.idle": "2026-01-19T18:20:57.195154Z", "shell.execute_reply": "2026-01-19T18:20:57.194667Z" } }, "outputs": [], "source": [ "class BancoDeEspanaAPI:\n", " def __init__(self, language='en'):\n", " self.language = language\n", "\n", " def request(self, url):\n", " response = requests.get(url)\n", " return response.json()\n", "\n", " def get_series(self, series, time_range='MAX'):\n", "\n", " # Prepare the series parameter\n", " if isinstance(series, list):\n", " series_list = ','.join(series)\n", " else:\n", " series_list = series\n", "\n", " # Download the data for the specified series\n", " url = f\"https://app.bde.es/bierest/resources/srdatosapp/listaSeries?idioma={self.language}&series={series_list}&rango={time_range}\"\n", " json_response = self.request(url)\n", "\n", " # Initialize an empty dataframe to store the results\n", " df = pd.DataFrame()\n", "\n", " # Go over each series in the response and extract the data\n", " for series_data in json_response:\n", "\n", " # Extract series name, dates, and values\n", " series_name = series_data['serie']\n", " dates = series_data['fechas']\n", " values = series_data['valores']\n", "\n", " # Add the data to the dataframe\n", " df[series_name] = pd.Series(data=values, index=pd.to_datetime(dates).date)\n", "\n", " # Sort the dataframe by index (date)\n", " df = df.sort_index()\n", "\n", " return df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can then create an instance of the `BancoDeEspanaAPI` class and use its methods to retrieve data. For example, to get the latest data for a specific series, we can use the `get_series()` method" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:57.197385Z", "iopub.status.busy": "2026-01-19T18:20:57.197172Z", "iopub.status.idle": "2026-01-19T18:20:57.458797Z", "shell.execute_reply": "2026-01-19T18:20:57.458006Z" } }, "outputs": [], "source": [ "bde = BancoDeEspanaAPI()\n", "df = bde.get_series(['DTNPDE2010_P0000P_PS_APU', 'DTNSEC2010_S0000P_APU_SUMAMOVIL'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, the requested series are in the DataFrame `df` and we can manipulate or analyze them as needed. For example, we can display the retrieved data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:57.461959Z", "iopub.status.busy": "2026-01-19T18:20:57.461672Z", "iopub.status.idle": "2026-01-19T18:20:57.472945Z", "shell.execute_reply": "2026-01-19T18:20:57.472314Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DTNPDE2010_P0000P_PS_APUDTNSEC2010_S0000P_APU_SUMAMOVIL
2024-07-01104.2-2.8
2024-10-01101.6-3.2
2025-01-01103.4-3.2
2025-04-01103.5-3.2
2025-07-01103.2-2.9
\n", "
" ], "text/plain": [ " DTNPDE2010_P0000P_PS_APU DTNSEC2010_S0000P_APU_SUMAMOVIL\n", "2024-07-01 104.2 -2.8\n", "2024-10-01 101.6 -3.2\n", "2025-01-01 103.4 -3.2\n", "2025-04-01 103.5 -3.2\n", "2025-07-01 103.2 -2.9" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or plot it" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:57.514380Z", "iopub.status.busy": "2026-01-19T18:20:57.514111Z", "iopub.status.idle": "2026-01-19T18:20:58.141840Z", "shell.execute_reply": "2026-01-19T18:20:58.141153Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd8FJREFUeJzt3XlYVGX7B/DvwDDDPmyyCSIqioq75p6aa6lpm5pKWmaaaZpl5lvvq9kvt8oWzUxzLbcWLTX3DRdwQ1DcUBEEBETZ9wHm+f1xZGRkV2AG+H6ua67inGfO3M84nLl5VpkQQoCIiIjIgBjpOwAiIiKixzFBISIiIoPDBIWIiIgMDhMUIiIiMjhMUIiIiMjgMEEhIiIig8MEhYiIiAwOExQiIiIyOHJ9B/AkNBoNYmJiYGVlBZlMpu9wiIiIqByEEEhLS4OrqyuMjEpvI6mRCUpMTAzc3d31HQYRERE9gaioKLi5uZVapkYmKFZWVgCkClpbW+s5GiIiIiqP1NRUuLu7a7/HS1MjE5SCbh1ra2smKERERDVMeYZncJAsERERGRwmKERERGRwmKAQERGRwamRY1DKQwiBvLw85Ofn6zsUIiKDYGxsDLlczuUZqEaolQmKWq1GbGwsMjMz9R0KEZFBMTc3h4uLCxQKhb5DISpVrUtQNBoNwsPDYWxsDFdXVygUCv61QER1nhACarUa9+/fR3h4OLy8vMpcKItIn2pdgqJWq6HRaODu7g5zc3N9h0NEZDDMzMxgYmKCO3fuQK1Ww9TUVN8hEZWo1qbP/MuAiKgo3huppuAnlYiIiAwOExQiIiIyOExQiIiIyOAwQTEg48ePh0wmg0wmg4mJCZycnNC/f3+sXbsWGo0Gx44d054v6bF+/XptOR8fnyLrwNjY2GD9+vXanxs2bKh9rrm5OXx8fPDzzz9rz69fv1573tjYGLa2tujcuTPmz5+PlJSUEuMv/Bg0aBAAIDExEdOmTUOzZs1gbm6OBg0a4P333y9ynaSkJPj6+kKlUkGlUsHX1xfJyck6ZaZPn44OHTpAqVSibdu2xb6fISEh6NWrF8zMzFC/fn3Mnz8fQohy/VsUrrdMJoOLiwtGjBiB8PBwbZmcnBxMmzYNDg4OsLCwwIsvvojo6OgK1yUyMhJDhw6FhYUFHBwc8P7770OtVleoLuWJtzRlfQ7y8/OxcOFCeHt7w8zMDHZ2dujSpQvWrVtXrusX8Pf3h7GxsfYzUVhERIROHWxtbfHss8/Cz89PW6Z3796YMWNGkef+/fffnK1HVMswQTEwgwYNQmxsLCIiIrB371706dMH06dPx5AhQ9CtWzfExsZqHyNGjNCWL3iMHDlSe62wsDBs3LixzNecP38+YmNjcenSJQwfPhyTJ0/Gtm3btOetra0RGxuL6Oho+Pv745133sHGjRvRtm1bxMTEFBt/4ceWLVsAADExMYiJicHXX3+NkJAQrF+/Hvv27cOECRN0rjF69GgEBwdj37592LdvH4KDg+Hr66tTRgiBt956S6e+haWmpqJ///5wdXXFuXPnsGzZMnz99ddYunRpme/H4/WOiYnB5s2bERwcjBdffFGb9M2YMQM7duzA1q1bcfLkSaSnp2PIkCE6SWFZdcnPz8fgwYORkZGBkydPYuvWrfjrr7/w4YcfVrguZcVbltI+B/PmzcN3332HL774AlevXsXRo0cxceJEJCUllfv9BIC1a9di2rRpOHnyJCIjI4stc+jQIcTGxsLPzw/W1tZ44YUXyp1oET2NsPvp+OXEbeTkcYFPgyBqoJSUFAFApKSkFDmXlZUlrl69KrKysrTHNBqNyMjJ1ctDo9GUu17jxo0Tw4YNK3L88OHDAoBYvXp1ucofPXpUABCzZs0S7u7uOu+FSqUS69at0/7s4eEhvv32W53ne3l5iVGjRgkhhFi3bp1QqVRFXuPevXvCwcFBjBkzpsx4SvP7778LhUIhcnNzhRBCXL16VQAQp0+f1pYJCAgQAMT169eLPH/u3LmiTZs2RY6vWLFCqFQqkZ2drT22cOFC4erqWq5/k+Lq/dtvv2njSE5OFiYmJmLr1q3a83fv3hVGRkZi37595a7Lnj17hJGRkbh79662zJYtW4RSqdR+vstTl7LiLUtZn4M2bdqIefPmlXmd0qSnpwsrKytx/fp1MXLkSPH555/rnA8PDxcARFBQkPZYdHS0ACBWrlwphBCiV69eYvr06UWuvWPHDlFDb2fVrrh7JEle/emU8Ji9W3yzv+zfGXoypX1/P67WrYNSnKzcfLT43369vPbV+QNhrni6t/m5555DmzZtsH37drz99tvlft6MGTPw22+/Yfny5fjoo4/K/TxTU1Pk5uaWWsbR0RFjxozB2rVrkZ+fD2Nj43Jfv7CUlBRYW1tDLpfeo4CAAKhUKnTu3FlbpkuXLlCpVPD390ezZs3Kdd2AgAD06tULSqVSe2zgwIGYM2cOIiIi4OnpWeFYzczMAAC5ubkIDAxEbm4uBgwYoD3v6uoKHx8f+Pv7Y+DAgeWqS0BAAHx8fODq6qoTZ05ODgIDA9GnT58nrkvheJ9E4c+Bs7Mzjhw5gilTpqBevXpPdL1t27ahWbNmaNasGcaOHYtp06bhv//9b6ldMwVrGT1pHYjK60F6Ds7fkVoE1/lH4O1nG8Ha1ETPUdVt7OKpIby9vREREVGh55ibm2Pu3LlYuHBhkXEexcnLy8P69esREhKCvn37liumtLQ0JCQkaI/t3r0blpaWOo8vvvii2OcnJCTgiy++wKRJk7TH4uLi4OjoWKSso6Mj4uLiyoyp8HWcnJx0jhX8XJHrFIiOjsZXX30FNzc3NG3aFHFxcVAoFLC1tS3yGgXXL09diovT1tYWCoWi1DJl1eXxeCuiuM/B0qVLcf/+fTg7O6N169aYPHky9u7dW6HrrlmzBmPHjgUgdQWmp6fj8OHDJZbPyMjAnDlzYGxsjF69elXotYgq6si1eBQM60rLzsOGUxF6jYdq4UqyxTEzMcbV+QP19tqVQQjxRIMAJ0yYgKVLl2Lx4sVYsGBBsWVmz56Nzz77DDk5OVAoFJg1a5ZO0lBaTAB04urTpw9++uknnXJ2dnZFnpuamorBgwejRYsWmDt3rs654ur5JPV/vHxx8ZYmJSUFlpaWEEIgMzMT7du3x/bt20vdw+TxOMtTlycpU1xdniTewkr7HLRo0QKXL19GYGAgTp48iePHj2Po0KEYP348fvnllzKvHRoairNnz2L79u0AALlcjpEjR2Lt2rXo16+fTtlu3brByMgImZmZcHFxwfr169GqVaty1YHoSR28dg8A0MLFGldjU7HmVDje7OEJS2Wd+Jo0SHXinZfJZE/dzaJv165de6JuCblcjv/7v//D+PHjMXXq1GLLzJo1C+PHj9duIlbeL/Br167B2toa9vb22mMWFhZo0qRJqc9LS0vDoEGDYGlpiR07dsDE5FEzqrOzM+7du1fkOffv3y/SilAaZ2fnIq0L8fHxAFDu61hZWeHChQswMjKCk5MTLCwsdK6vVquRlJSk04oSHx+Pbt26lbsuzs7OOHPmjM75pKQk5Obm6pQpT11Ki7c8yvocGBkZoVOnTujUqRM++OAD/Pbbb/D19cWnn35a5mdzzZo1yMvLQ/369bXHhBAwMTEp8h5u27YNLVq0gI2Njc5nC5AGAhfXGpicnAxra+sK1ZeoQJY6Hydu3gcALHqlFWZsDcbtBxn4NeAO3u3dWM/R1V3s4qkBjhw5gpCQELzyyitP9PzXXnsNLVu2xOeff17seQcHBzRp0gSurq7lTk7i4+OxefNmDB8+vEJLZ6empmLAgAFQKBTYuXNnkb1AunbtipSUFJw9e1Z77MyZM0hJSdF+8ZdH165dcfz4cZ3pugcOHICrqysaNmxYrmsYGRmhSZMmaNSoUZEv+w4dOsDExAQHDx7UHouNjcXly5e1cZanLl27dsXly5cRGxurE6dSqUSHDh0qVJfS4i2Pin4OWrRoAUDqiilNXl4eNm7ciG+++QbBwcHax8WLF+Hh4YFNmzbplHd3d0fjxo2LJCeA1K14/vz5IsfPnTtX7vFJRI87desBsnM1qG9jhlb1VZj6nPRH1uoTt5GpztNzdHUXExQDk5OTg7i4ONy9excXLlzAggULMGzYMAwZMgRvvPHGE1930aJFWLt2bZlfJsURQiAuLg6xsbG4du0a1q5di27dukGlUmHRokXFxl/48eDBAwBSy8mAAQOQkZGBNWvWIDU1VVumYCps8+bNMWjQIEycOBGnT5/G6dOnMXHiRAwZMkTnC+jWrVsIDg5GXFwcsrKytF96BV/io0ePhlKpxPjx43H58mXs2LEDCxYswMyZMytlvQyVSoUJEybgww8/xOHDhxEUFISxY8eiVatW2i6L8tRlwIABaNGiBXx9fREUFITDhw/jo48+wsSJE7UtAlVdl/J49dVX8e233+LMmTO4c+cOjh07hvfeew9NmzaFt7d3qc/dvXs3kpKSMGHCBPj4+Og8Xn31VaxZs6bccUyZMgVhYWF47733cPHiRdy4cQM//vgj1qxZg1mzZj1tNamOOnhVauns19wRMpkML7ZxhYe9ORIz1Nh0uvjp8FQNKjpFyM/PTwwZMkS4uLgIAGLHjh3ac2q1Wnz88cfCx8dHmJubCxcXF+Hr66szhVIIIbKzs8XUqVOFvb29MDc3F0OHDhVRUVHljqGi04xrinHjxgkAAoCQy+WiXr16ol+/fmLt2rUiPz+/2PKlTTNOSkrSOT5gwAABoMxpxoWtW7dOG5NMJhMqlUo888wzYv78+UXe/8LxF340a9ZMJ67iHuHh4drrJCQkiDFjxggrKythZWUlxowZU6QuvXr1KvM6ly5dEj179hRKpVI4OzuLefPmlXvad0nTqwvLysoSU6dOFXZ2dsLMzEwMGTJEREZG6pQpT13u3LkjBg8eLMzMzISdnZ2YOnWqzpTi8tSlPPGWpqzPwapVq0SfPn1EvXr1hEKhEA0aNBDjx48XERERZV57yJAh4oUXXij2XGBgoAAgAgMDi51mXJzz58+LgQMHCkdHR2FtbS06duwotmzZUmYcJKnJ98iqkJ+vER2+OCA8Zu8Wx2/Ea49vOxspPGbvFu3nHxBxKXyvKktFphnLhCjn0poP7d27F6dOnUL79u3xyiuvYMeOHRg+fDgAaZDeq6++iokTJ6JNmzZISkrCjBkzkJeXp9Ms++6772LXrl1Yv3497O3t8eGHHyIxMRGBgYHlmq6ampoKlUqlnaJaWHZ2NsLDw+Hp6cmtxImIHsN7pK7AO0l45Sd/WCnlCPxvfyjkUsdCbr4Gg384gRv30tHGTYVtk7rCtJImPdRlpX1/P67CI0eff/55PP/888WeU6lUOn3yALBs2TI888wziIyMRIMGDZCSkoI1a9bg119/1TaF//bbb3B3d8ehQ4cwcKB+ZtsQEVHdc+jh7J3e3o7a5AQATIyNsMq3I4avOIWL0Sn4+M9L+H5UW26pUI2qfAxKSkoKZDIZbGxsAKDMBa6Kk5OTg9TUVJ0H0dNo2bJlkfVaCh6PD9qs6TZt2lRiXVu2bPnU14+MjCzx+paWliUuaU9kCAqPP3lcQwcLrBjTHnIjGXZejMGKY2HVHV6dVqVzb7Ozs/HJJ59g9OjR2qac8ixw9biFCxeWOAOF6Ens2bOnxNVJKzKduSZ48cUXdVazLazwFO8n5erqiuDg4FLPExmi8AcZuBWfDrmRDL2bFU1QAKBbYwfMfbEl/vv3ZXy1PxTNnKzQr0XtukcYqipLUHJzczFq1ChoNBqsWLGizPKilIW45syZg5kzZ2p/Tk1Nhbu7e6XFSnWPh4eHvkOoNlZWVrCysqqy68vl8jLXviEyRH8GRgEAOjeyg8qs5GTdt4sHQuNS8dvpSCzcew19H872oapVJV08ubm52q3eDx48qDMQpvACV4XFx8eX+JerUqmEtbW1zoOIiOhJxadmY81JaZfsN7o2LLP87EHeMFcYI+x+Bs6EJ1ZxdARUQYJSkJzcvHkThw4dKrLYUnkWuCIiIqpK3x++iexcDdo3sMGAcnTZWJmaYFhbaSXkTWc4rqo6VLiLJz09Hbdu3dL+HB4ejuDgYNjZ2cHV1RWvvvoqLly4gN27dyM/P187rsTOzg4KhUJngSt7e3vY2dnho48+0lngioiIqKrcvp+Oreek7p3Zg7zL3V0zpnMDbDkbiX2XY/EgvQUcLJVlP4meWIVbUM6fP4927dqhXbt2AICZM2eiXbt2+N///ofo6Gjs3LkT0dHRaNu2LVxcXLSPwjN0vv32WwwfPhwjRoxA9+7dYW5ujl27dpVrDRQiIqKn8c2BG8jXCDzn7YjOjYpuqVASn/oqtHG3QW6+wB/no6swQgKeoAWld+/eKG1tt/Ks+2Zqaoply5Zh2bJlFX15IiKiJ3YxKhn/hsRCJgM+HlTx/ZvGdG6Ai1HJ2Hz2DiY92whGRhwsW1W4Fw8REdUJQggs2nsdAPBSu/rwdq74hIuhrV1hZSpHVGIWTtx6UNkhUiFMUAzI+PHjIZPJIJPJYGJiAicnJ/Tv3x9r166FRqPBsWPHtOdLeqxfv15bzsfHR7sJXwEbGxusX79e+3NQUBCGDBkCR0dHmJqaomHDhhg5cqR2g7+IiIgSX+v06dPa66jVaixZsgRt2rSBubk5HBwc0L17d6xbt0673sjChQvRqVMnWFlZwdHREcOHD0doaKhOfEIIzJs3D66urjAzM0Pv3r1x5coVnTKrVq1C7969YW1tDZlMhuTk5CLvZVJSEnx9faFSqaBSqeDr61tsuZL89ddf6Ny5M1QqFaysrNCyZUt8+OGHOmX8/PzQoUMHmJqaolGjRli5cmWx12nRogWUSiVatGiBHTt2FCmzYsUK7bLjHTp0wIkTJyr8njRs2FD772Jubg4fHx/8/PPP5a4vAGRlZcHW1hZ2dnbIysoqcr6s15g3bx7atm1b5HnJycmQyWQ4duxYueIo670v7+sUfHblcjnu3r2rUzY2NhZyuRwymQwRERFFrjVgwAAYGxvrfMYLFPyeTp48uci5KVOmQCaTYfz48TrHo6KiMGHCBLi6ukKhUMDDwwPTp09HQkICAODevXswMTHBb7/9Vux7MmnSJLRu3brY+pf0flBRwVHJCLidAIWxEWb2b/pE1zBTGOOV9m4AgE2n71RmePQYJigGZtCgQYiNjUVERAT27t2LPn36YPr06RgyZAi6deuG2NhY7WPEiBHa8gWPkSNHaq8VFhaGjRs3lvha8fHx6NevHxwcHLB//37tTsUuLi7IzMzUKXvo0CGd14mNjUWHDh0ASMnJwIEDsWjRIrzzzjvw9/fH2bNn8d5772HZsmXaL1M/Pz+89957OH36NA4ePIi8vDzt7sYFlixZgqVLl2L58uU4d+4cnJ2d0b9/f6SlpWnLZGZmYtCgQfjPf/5TYt1Gjx6N4OBg7Nu3D/v27UNwcDB8fX3L9W9w6NAhjBo1Cq+++irOnj2LwMBAfPnll9qdkgFpcPgLL7yAnj17IigoCP/5z3/w/vvv46+//tKWCQgIwMiRI+Hr64uLFy/C19cXI0aMwJkzZ7Rltm3bhhkzZuDTTz9FUFAQevbsieeff15n9dXyvCcAMH/+fMTGxuLSpUsYPnw4Jk+ejG3btpWrzoCUGPj4+KBFixbYvn17sWWe9jXKUp73vqJcXV2L/B5s2LAB9evXL7Z8ZGQkAgICMHXq1BJ3WnZ3d8fWrVt1Erns7Gxs2bIFDRo00Cl7+/ZtdOzYETdu3MCWLVtw69YtrFy5EocPH0bXrl2RmJgIJycnDB48GOvWrSvyWllZWdi6dSsmTJhQ0arTY35/OG5kcGsXuNmaP/F1xnSW/o0PXbuHu8lFk3mqJFW4aWGVqfBuxhqNEDnp+nmUc/dcIUrenfjw4cMCgFi9enW5yhfsGjxr1izh7u6u816oVCrtbsY7duwQcrlc5ObmlhhTeXaYXbx4sTAyMhIXLlwock6tVov09PRinxcfHy8ACD8/PyGEEBqNRjg7O4tFixZpy2RnZwuVSiVWrlxZYj0f3x346tWrAoA4ffq09lhAQIAAIK5fv15iPQpMnz5d9O7du9QyH3/8sfD29tY5NmnSJNGlSxftzyNGjBCDBg3SKTNw4EAxatQo7c/PPPOMmDx5sk4Zb29v8cknnwghyv+eFLcbsZeXl85rlaV3795i5cqV4qeffhJ9+vQpcr6s15g7d65o06ZNkeclJSUJAOLo0aNlxlCe9768r1Pw2f3ss8+El5eXTtlmzZqJ//73v0V2wBZCiHnz5olRo0aJa9euCSsrqyKf34Lfu1atWonffvtNe3zTpk2iVatWYtiwYWLcuHHa44MGDRJubm4iMzNT5zqxsbHC3Nxc+++/c+dOIZPJisSzceNGoVAoxIMHD4qtf0nvR0nq6m7GmTl5ouX/9gmP2bvFqVv3n/p6r630Fx6zd4uuCw6Js+EJlRBh3VCR3YzrRgtKbiawwFU/j9zMsuMrw3PPPYc2bdqU+FdtSQp2kl6+fHmx552dnZGXl4cdO3aUa3BzSTZt2oR+/fppZ3YVZmJiAgsLi2Kfl5KSAkCagg5IrRJxcXE6+zQplUr06tWrxH2aihMQEACVSqWzvHuXLl2gUqnKdR1nZ2dcuXIFly9fLvU1CscJAAMHDsT58+e1XVollSmIQa1WIzAwsEiZAQMGaMs8zXtiampa4nL+jwsLC0NAQABGjBiBESNGwN/fH7dv3y7zeRV5jfIoz3tfUS+++CKSkpJw8uRJAMDJkyeRmJiIoUOHFikrhMC6deswduxYeHt7o2nTpvj999+Lve6bb76p0+Kxdu1avPXWWzplEhMTsX//fkyZMgVmZmY655ydnTFmzBhs27YNQgi88MILcHZ21umCLbju8OHDi6wpRRWz93Is0nPy4G5nhi6eT/9eLnipFTwdLBCTko2RPwfgh8M3ka958vsoFVU3EpRawNvbu9i+8tKYm5tj7ty5WLhwoTYZKKxLly74z3/+g9GjR8PBwQHPP/88vvrqK9y7d69I2W7duhXZBK5gfMvNmzfh7e1dodiEEJg5cyZ69OgBHx8fANCumfP4isKl7dNUnLi4ODg6Ft1Xw9HRsVzXmTZtGjp16oRWrVqhYcOGGDVqFNauXYucnByd1yguzry8PO34nZLKFMTw4MED5Ofnl1rmSd6TvLw8rF+/HiEhIejbt2+Z9QWkL8Hnn39eOwZl0KBBWLt2bYnln+Q1yqM8731FmZiYYOzYsdr6rF27FmPHji12H6JDhw4hMzNTu6v62LFjS+zm8fX1xcmTJxEREYE7d+7g1KlTGDt2rE6ZmzdvQgiB5s2bF3uN5s2bIykpCffv34exsTHeeOMNrF+/XvsHQ3h4OPz8/Ni9UwkKpgW/2t69UmbeNHG0xK5pPfByu/rQCGDpwRvwXXMGmeq8p742Sap0s0CDYWIO/CdGf69dCUQpexWVZsKECVi6dCkWL16MBQsWFDn/5ZdfYubMmThy5AhOnz6NlStXYsGCBTh+/DhatWqlLbdt27YiN9mCdWueJLapU6fi0qVL2r9qC3v8Wk9y/eLKl/c6FhYW+PfffxEWFoajR4/i9OnT+PDDD/H9998jICAA5ubmJcb5+PHy1KWyysyePRufffYZcnJyoFAoMGvWLEyaNKnM+ubn52PDhg34/vvvtcfGjh2LDz74AJ9//rnO+kRP+hrlVd73vqImTJiArl27YsGCBfjjjz8QEBCAvLyiXyRr1qzByJEjIZdLt8bXX38ds2bNQmhoKJo1052S6uDggMGDB2PDhg0QQmDw4MFwcHCoUFyPf2YmTJiAxYsX48iRI+jbty/Wrl0LNzc3LmL5lCITMhFwOwEyGfBKh+LHHj0JS6UcS0e2RQ8vB3z292X4hyXg/S1B+Nm3I4w5/fip1Y0WFJkMUFjo51FJG0pdu3YNnp6eFX6eXC7H//3f/+H7779HTEzxSZq9vT1ee+01fPPNN7h27RpcXV3x9ddf65Rxd3dHkyZNdB4FmjZtimvXrpU7pmnTpmHnzp04evQo3NzctMednZ0BoEjLQGn7NBXH2dm52Fag+/fvV+g6jRs3xttvv41ffvkFFy5cwNWrV7UDQp2dnYuNUy6Xa5viSypTEIODgwOMjY1LLVOR92TWrFkIDg7GnTt3kJ6ejiVLlsDIqOxf8f379+Pu3bvaL2a5XI5Ro0YhOjoaBw4cKPdrWFtbF9tSVzB7SqVSlRlLgdLe+yd5HR8fH3h7e+P1119H8+bNta12hSUmJuLvv//GihUrtO9D/fr1kZeXV2Jr0ltvvYX169djw4YNRbp3AKBJkyaQyWS4evVqsc+/fv06bG1ttYmNl5cXevbsiXXr1kGj0WDDhg148803y/XvSCUr2BSwRxOHpxocW5KX27vh1wmdoZAb4dC1eHyxu/h/b6oYfuprgCNHjiAkJASvvPLKEz3/tddeQ8uWLfH555+XWVahUKBx48Y6M2vKMnr0aBw6dAhBQUFFzuXl5WmvJYTA1KlTsX37dhw5cqRIwuXp6QlnZ2edfZrUajX8/PwqtE9T165dkZKSgrNnz2qPnTlzBikpKU+831PDhg1hbm6urUvXrl114gSAAwcOoGPHjtqug5LKFMSgUCjQoUOHImUOHjyoLVOR98TBwQFNmjSBq6trhVqc1qxZg1GjRiE4OFjnMWbMmCLdG6W9hre3N6Kjo4skU+fOnYORkdET73j8+Hv/pK/z1ltv4dixY8UmEoA0lsrNzQ0XL17UeR++++47bNiwodgWl0GDBkGtVmtnsj3O3t4e/fv3x4oVK4pM3Y6Li8OmTZswcuRInfdywoQJ2L59O/766y9ER0fjzTffLP0NolLlawT+DJS6d17r6F5lr9PBwxbfjmgLAFjvH4G1DzcipKdQ+WN0q16FZ/HUEOPGjRODBg0SsbGxIjo6WgQGBoovv/xSWFpaiiFDhoi8vLwi5UubxVN4dsvhw4eFXC4XcrlcO4tn165dYsyYMWLXrl0iNDRUXL9+XXz11VfC2NhYbNy4UQjxaCbEoUOHRGxsrM6j4D3Ozs4WPXv2FLa2tmL58uUiODhYhIWFiW3bton27dtrZwC9++67QqVSiWPHjulcp/DshkWLFgmVSiW2b98uQkJCxOuvvy5cXFxEamqqtkxsbKwICgoSq1evFgDE8ePHRVBQkEhIeDSSftCgQaJ169YiICBABAQEiFatWokhQ4aU699h7ty5YtasWeLo0aPi9u3b4sKFC2L8+PHCzMxMOwvo9u3bwtzcXHzwwQfi6tWrYs2aNcLExET8+eef2uucOnVKGBsbi0WLFolr166JRYsWCblcrjO7aOvWrcLExESsWbNGXL16VcyYMUNYWFiIiIiICr0nxc2wKY/4+HhhYmIi9u7dW+TcgQMHhImJiYiPjy/Xa+Tm5opWrVqJXr16iZMnT4rbt2+Lv//+WzRo0EBMmTKlXPGU570v7+s8PgMtNzdX3L9/XztrLSgoSGcWT5s2bcTs2bOLxJSamiqUSqX4+++/hRBFf+9SUlJ07kWPz+K5ceOGcHBwED179hR+fn4iMjJS7N27V/j4+AgvLy+dz60QQmRkZAhra2tha2sr+vXrV+x79PgsnqZNm4qgoCCdx82bN4t9j2vyPfJJHL8RLzxm7xat5u4TWeq8sp/wlFYeuyU8Zu8WDT/ZLbadixSaCszkrAsqMouHCYoBGTdunAAgAAi5XC7q1asn+vXrJ9auXSvy8/OLLV/eBEUIIQYMGCAAaBOUsLAwMXHiRNG0aVNhZmYmbGxsRKdOnbTnhXh0ky/usWXLFm257OxssXDhQtGqVSthamoq7OzsRPfu3cX69eu1XwglXafw62k0GjF37lzh7OwslEqlePbZZ0VISIhOPebOnVvmdRISEsSYMWOElZWVsLKyEmPGjCnyfpTkyJEj4pVXXhHu7u5CoVAIJycnMWjQIHHixAmdcseOHRPt2rUTCoVCNGzYUPz0009FrvXHH3+IZs2aCRMTE+Ht7S3++uuvImV+/PFH4eHhIRQKhWjfvr122nVF3pMnTVC+/vprYWNjI9RqdZFzubm5ws7OTnzzzTflfo3Y2Fjx5ptvCg8PD2FmZia8vb3F/PnzRXZ2drniKe97X57XKWuKfOEE5fz58wKAOHv2bLFlhw4dKoYOHSqEKPn3rsDjCYoQQkRERIjx48cLZ2dnYWJiItzd3cW0adO0U4cf98477wgAYvPmzUXOFZegFPf70KtXr2KvXZPvkU9i2uYLwmP2bvHZjpCyC1cCjUYj5my/JDxm7xYes3eLF5efFP63iv93rosqkqDIhHiK+aV6kpqaCpVKhZSUFFhb6y5VnJ2djfDwcO3KnERE9Ehdu0d2WXAYcanZ+H1SVzzjaVctr5mXr8GyI7ew+sRtZKql2Y69m9XD16+1qfM7IJf2/f04jkEhIqJaKTs3H3Gp2QCkacHVRW5shA/6N4XfrD54o6sH5EYyHAu9j/m7OHi2IpigUJ0zefLkImu6FDyK21+lpmvZsmWJ9d20aVO1xlLX3nvSr+gkaWCyhcIYtuZF172pavWslJg/zAd/TO4KmQzYeTEGl+8WnYFGxasb66AQFTJ//nx89NFHxZ4rq8mxJtqzZ0+Jq71WZNp1Zahr7z3pV1SStJK3u535E60jVVnaNbDFsDau+Ds4Bov3XcevEzqX/SRigkJ1j6OjY7ErzdZWHh4e+g5Bq66996RfUYlSgtLArvLXPqmoDwc0w78hsThx8wFO3XqA7k0qtqhfXVRru3hq4NhfIqIqV5fujZEJj1pQ9M3dzhxjOkt/LCzaex0a7ttTplqXoBQskpWZ+fSb9BER1TYF98bi9iKqbSINqAUFAKY+1wQWCmOE3E3Bnsux+g7H4NW6Lh5jY2PY2NggPj4egLRhnj77HomIDIEQApmZmYiPj4eNjY3OHku1VdTDQbKGkqA4WCrxzrON8e2hG1i09zryNQLdGjugnlXdnnpcklqXoACP9i8pSFKIiEhiY2OjvUfWZkII7RgUdzszPUfzyNs9PfHbmTuITsrC9K3BAABvZys0c7aCjZkJVGYmqGdtimFtXWFtWvtbuUpTKxMUmUwGFxcXODo6ljh7gYiorjExMakTLScAkJSZi/Qcaf+kqtgg8ElZKOX4c3JXbD4TiZO3HuBKTCqux6XhelyaTrnNZyKx+e3OsLVQ6ClS/auVCUoBY2PjOvPLSEREjxS0njhZK2FqYljfAx72FpjzQnMAQEJ6Ds6EJ+JuUhZSsnKRkpWLvZfjcC02FWN+OYPNEzvDxrxuJim1OkEhIqK6ydAGyJbE3lKJF1q56Bwb180Do1adxtWHScqmt+tmklLrZvEQEREVJCjuBtS9U15NHK2wZWIX2FsocCUmFb5rzmq7q+oSJihERFTrRCcZzhooT8LLyQpb3pGSlJC7KZi384q+Q6p2TFCIiKjWqSldPKVp6mSFn8Z2gJEM+DMwGrsvxeicF0LgVnw6cvLy9RRh1WKCQkREtY62i6cGJygA8IynHd7r0wQAMGd7CO4mS2u7pGXnYvrWYPRb6ofBP5xE6GOzgGoDJihERFSr5OVrEJOcDaBmt6AUeL+vF9q62yAtOw8fbA3GhcgkDP7hJHZelFpUbsWn48XlJ7HlbGSt2sqACQoREdUqsSnZyNcIKORGcKwFq7SaGBvhh1HtYKmU42xEIl5e4Y/IxEzUtzHDmnEd0atpPeTkaTBnewimbQlCSlbtWP+LCQoREdUqBd07brZmMDKqHVudNLA3x/xhLbU/v9DKGXum90Tf5k5YN74T5jzvDbmRDLsvxWLAt344GlrzV1LnOihERAYo4kEGDlyNQ2RiJlKy8pCSlYtsdT56e9fD2C4edX4Z9NJE1YIBssV5qV19yGSAqdwYg3yctfvMGRnJMKlXYzzjaYeZv19E+IMMvLnuHEZ0dMNnQ1rU2M8KExQiIgOgztPgxr00+N24j38vxeJqbGqx5c5GJOKno2F4o5sH3uzuCQfLmt+FUdlqwwye4shkMrzUzq3E8+0a2GLP+z3x1f5QrPMPx+/no3EuIgm7p/WAhbLmfd3XvIiJiGqJW/Hp2BgQgYtRybgWlwZ1nkZ7zthIhm6N7dHO3QbWZiawMVcgOzcfG/wjcDM+HT8eDcNPx8Lg5WiFVm4qtHZToVfTevCwtyjyOr+fi8IfgVFQyI2gerghnZejFV7r6AarGvrXdWlqa4JSHmYKY/xvaAsM8nHGtC0XEP4gAyuO3cKsgd5FyqZl5yIxQ43kTGmJfRNjI7RwtYbKzDA+EzJRA4f8pqamQqVSISUlBdbW1voOh4ioQjQagbWnwvHV/lDkFEpKrE3laO9hi0EtnTGgpTPsitkoTqMROHjtHlYcvYWL0Sk65xTGRpjezwuTnm0EubERcvLyMW/nFWw5G1VsHFamcrzRtfa1xAxbfhIXo1OwcmwHDPKp/Ts3l2T/lThM+jUQCrkRDn3QCw3sHyVsq4/fxuJ915GnKZoCeDpYwKe+Cm3cVJjQw1PblVQZKvL9zQSFiKgaRSZk4qM/L+JseCIAoKeXA0Z0dEdrNxUa2JlX6MsgLiUbIXdTEHI3BQFhD3AuIgkA0Kq+CrMHeeObg6EIikyGTAZM69MEjepZIjlTjaTMXPwbEotb8ekAAKXcCOO6NcT7fb1gWagrIDlTjR8O38Lluylo5iy11LRxs4GXo6VBDz5t/8VBJGaosef9nmjhWne/I4QQGLvmDE7dSsCgls5Y6dsBALAnJBZTNl0AAJgrjLWtamnZedp1VgDAw94cfrP6VGpMTFCIiAxQxIMMDF12Emk5eTBXGOOzwS3w+jPulfIXqhACO4LuYt7OK0jNfrRvi7WpHD+83g69mznqlNe2xBwLw8WoZACAo5USnw5ujiGtXfHH+Sgs3ncdSZlFp6x6Olhg1sBmeL7QQE1DkZadi1bzDgAAQuYNqJVdWBURGpeGF344gXyNwOa3O8PK1ASv/eyP7FwN3uruif8NbaFTPjFDjcsPk16l3Ahv92xUqfEwQSEiMkBvbziHQ9fi0aq+Cj+Obq/T5F5Z4lOz8Z8dITh0LR7ezlb42bdDseNSCgghcCz0Pj7fdQURCdLYDXsLBRIy1AAAL0dLjO/eEBEPMnApWvriylRLS6u3cVNh9vPe6NbYodLr8aSuxqTihR9OwNbcBEH/G6DvcAzC3H8uY0PAHTRxtERadi7upeagV9N6WDOuI+TG1bvaSEW+vzlIloioGvjduI9D1+IhN5Lh25FtqiQ5AQBHa1OsfqMjbsWno4G9OZRy41LLy2Qy9PF2RNfG9vjlxG0sP3oLCRlqWCrlmNHPC+O6NYRJoS+x9Jw8rD5+G6tP3MbF6BSMXn0GbdxUeP2ZBhjaxhUWSjnupWZjb0gsDl67B1O5MV7r6I5+zR2r5cswKqnuDpAtyQf9m+KfizHaLr0mjpZYNrpdtScnFVXhFpTjx4/jq6++QmBgIGJjY7Fjxw4MHz5ce14Igc8//xyrVq1CUlISOnfujB9//BEtWz5aYCYnJwcfffQRtmzZgqysLPTt2xcrVqyAm1vJ06cKYwsKEdUkufkaPP/9CdyKTy+2Wd2QRCdl4sj1eAxq6QxHa9MSy91Py8GyIzex5WwkcvOlrxFLpRyNHS1xKToZj3+zOFkrMaKjO2zNFUjJkmaNWJvKMaFno0qdNfLLidv4v3+vYUhrFywf3b7SrlvTbQyIwP/+uQJbcxP8/V73UlvVqlKVtqBkZGSgTZs2ePPNN/HKK68UOb9kyRIsXboU69evR9OmTfF///d/6N+/P0JDQ2FlZQUAmDFjBnbt2oWtW7fC3t4eH374IYYMGYLAwEAYG5ee7RMR1TS/nb6DW/HpsLNQYHpfL32HUyo3W3O80bVhmeXqWSkxf5gPpvf1wl8XorHlbBTCH2Rox7O0b2CDF1q54EG6Gr+fj8K91BwsO3KryHUOXovHxreeQb3HlqRPzlQjrdBYGgulvNhZTUWud/UeAKCZk1WZZeuSsZ09YKmUo7Wbjd6Sk4p6qjEoMplMpwVFCAFXV1fMmDEDs2fPBiC1ljg5OWHx4sWYNGkSUlJSUK9ePfz6668YOXIkACAmJgbu7u7Ys2cPBg4cWObrsgWFiGqKxAw1en91FKnZefjyJR+M6eyh75CqhBACp28nIiopEz2aOMDVxkx7LicvH/sux2H/lTjIZDLYmJnA2swEf5yPxoP0HDS0N8evEzrD3c4cMclZ+P7QTfwRGIXHZ8CO7twA/3mhuc5Mo8JC49Iw8LvjMJIBJ2c/pxMDGQa9jUEJDw9HXFwcBgx4NDBJqVSiV69e8Pf3x6RJkxAYGIjc3FydMq6urvDx8YG/v3+xCUpOTg5ycnK0P6emFr/CIhGRvp0NT8Tv56OQmy+tbxLxIAOp2Xlo7mKNUZ0a6Dm6qiOTydC1sT26wr7IOaXcGMPa1sewtvV1jo/s6I6xa84gIiETr60MwCAfZ2w+G6ldsM5c8ahFPVOdj81nIuEXeh9fvdoa3ZoUHZj76+kIAED/Fk5MTmqBSk1Q4uLiAABOTk46x52cnHDnzh1tGYVCAVtb2yJlCp7/uIULF+Lzzz+vzFCJiCqVEALrTkXgyz3XkF/M4ldzh7aAsQGvHaIPDR0s8OfkbvBdcwY349Ox3j8CAPCMpx1mD/JGB49H3xP+YQ/w8Z+XEJ2UhdG/nMGb3Rviv4NbaNdjScvOxY4LdwGgXF1UZPiqZBbP4/PihRBlzpUvrcycOXMwc+ZM7c+pqalwd3d/+kCJiCpBdm4+Pt1xGX9diAYADG7lgnYNbLTnGztaokujoi0LBDirTPH7pK54f2sQMnLy8H5fL/RqWq/I90G3xg7YN+NZLNxzDZvORGLdqQjYmSsw7eGYnu0X7iJDnY/G9SzQrTHf69qgUhMUZ2dpSeG4uDi4uLhoj8fHx2tbVZydnaFWq5GUlKTTihIfH49u3boVe12lUgmlsvYsw0xEtUdihhpvrj+Hi1HJMJIB/3mheaUvD17b2Voo8OuEzmWWs1TK8eVLreBTX4U520Ow9NAN+Lip0LtpPfx6Wmql9+3iwfe+lqjUSdCenp5wdnbGwYMHtcfUajX8/Py0yUeHDh1gYmKiUyY2NhaXL18uMUEhIjJE2bn5mLjxPC5GJcPG3AQb3+qMt3s24hdkFXv9mQYY3bkBhACmbwnCtnNRuBWfDnOFMV7uUL7lKsjwVbgFJT09HbduPZoqFh4ejuDgYNjZ2aFBgwaYMWMGFixYAC8vL3h5eWHBggUwNzfH6NGjAQAqlQoTJkzAhx9+CHt7e9jZ2eGjjz5Cq1at0K9fv8qrGRFRFdJoBD784yIC7yTB2lSOPyd3RRNHTm2tLnOHtsC12FQERSbjk+0hAICX2tWHdR1f2r42qXCCcv78efTp82jzoIKxIePGjcP69evx8ccfIysrC1OmTNEu1HbgwAHtGigA8O2330Iul2PEiBHahdrWr1/PNVCIqMZYsj8U/16KhYmxDD/7dmRyUs2UcmOsHNsBg384iQfp0ixPDo6tXbgXDxFRBW05G4k5D/9q/3ZkG7zUjt0K+nIuIhHj1p5Ft8YO+GVcR32HQ2XgXjxERFUkJy8f83ddBQDM6OfF5ETPOjW0w7lP+8HUhC3wtQ0TFCKiCgiNS0NWbj5szE0Mftn6usKihJVlqWYz7K0MiYgMTMjdFABAq/oqztYhqkJMUIiIKuByoQSFiKoOExQiogq4FM0Ehag6MEEhIiqnnLx83LiXBgDwYYJCVKWYoBARlVNoXBpy8wVszU3gZsvdcomqEhMUIqJyKuje8eEAWaIqxwSFiKicOECWqPowQSEiKqeCKcat3ZigEFU1JihEROWQnZuP0DgOkCWqLkxQiIjKITQuDXkaaYBsfRsOkCWqakxQiIjKQbuCrJsNB8gSVQMmKERE5RCiXaCNO6gTVQcmKERE5RDCGTxE1YoJChFRGbJzH60g28rNRr/BENURTFCIiMpw/eEAWTsLBVxVpvoOh6hOYIJCRFSGwt07HCBLVD2YoBARleEydzAmqnZMUIiIynAjXhp/0tyFM3iIqgsTFCKiMtxJyAQANHQw13MkRHUHExQiolKkZeciMUMNAPCwt9BzNER1BxMUIqJSFLSe2FsoYKmU6zkaorqDCQoRUSkKEhQPe3bvEFUnJihERKW4k5gBgN07RNWNCQoRUSkiH7agNLBjCwpRdWKCQkRUiogEqQWFM3iIqhcTFCKiUjxqQWEXD1F1YoJCRFSC7Nx8xKZmA+AgWaLqxgSFiKgE0UmZEAKwVMphb6HQdzhEdQoTFCKiEtwpNECWmwQSVS8mKEREJeAaKET6wwSFiKgEdx7O4GnABIWo2jFBISIqwZ3Eh5sEcpE2omrHBIWIqAQFU4w9uEgbUbVjgkJEVIx8jUBU0sNBsuziIap2TFCIiIoRk5yF3HwBhbERXFRm+g6HqM5hgkJEVIzIh+NP3OzMYGzEKcZE1Y0JChFRMQr24OH4EyL9qPQEJS8vD5999hk8PT1hZmaGRo0aYf78+dBoNNoyQgjMmzcPrq6uMDMzQ+/evXHlypXKDoWI6IlpB8hyBg+RXlR6grJ48WKsXLkSy5cvx7Vr17BkyRJ89dVXWLZsmbbMkiVLsHTpUixfvhznzp2Ds7Mz+vfvj7S0tMoOh4joiXCRNiL9qvQEJSAgAMOGDcPgwYPRsGFDvPrqqxgwYADOnz8PQGo9+e677/Dpp5/i5Zdfho+PDzZs2IDMzExs3ry5ssMhInoi2i4eJihEelHpCUqPHj1w+PBh3LhxAwBw8eJFnDx5Ei+88AIAIDw8HHFxcRgwYID2OUqlEr169YK/v3+x18zJyUFqaqrOg4ioqgghtINk2cVDpB/yyr7g7NmzkZKSAm9vbxgbGyM/Px9ffvklXn/9dQBAXFwcAMDJyUnneU5OTrhz506x11y4cCE+//zzyg6ViKhYD9LVyFTnQyYD3Gw5xZhIHyq9BWXbtm347bffsHnzZly4cAEbNmzA119/jQ0bNuiUe3xnUCFEibuFzpkzBykpKdpHVFRUZYdNRKRVsAePq8oMSrmxnqMhqpsqvQVl1qxZ+OSTTzBq1CgAQKtWrXDnzh0sXLgQ48aNg7OzMwCpJcXFxUX7vPj4+CKtKgWUSiWUSmVlh0pEVKxrcdKAfY4/IdKfSm9ByczMhJGR7mWNjY2104w9PT3h7OyMgwcPas+r1Wr4+fmhW7dulR0OEVGFBEUmYeGeawCADh62eo6GqO6q9BaUoUOH4ssvv0SDBg3QsmVLBAUFYenSpXjrrbcASF07M2bMwIIFC+Dl5QUvLy8sWLAA5ubmGD16dGWHQ0RUbjfupeHN9eeQqc5HjyYOmPpcE32HRFRnVXqCsmzZMvz3v//FlClTEB8fD1dXV0yaNAn/+9//tGU+/vhjZGVlYcqUKUhKSkLnzp1x4MABWFlZVXY4RETlEpWYCd81Z5CcmYu27jb42bcDx58Q6ZFMCCH0HURFpaamQqVSISUlBdbW1voOh4hquOzcfDz//QmEP8hAMycrbJvUBTbmCn2HRVTrVOT7m3vxEFGd90/wXYQ/yICTtRIbJzzD5ITIADBBIaI6TQiB9f7SGkwTenjCydpUzxEREcAEhYjquHMRSbgWmwpTEyOM6Oiu73CI6CEmKERUp20IiAAADG9bn107RAaECQoR1VlxKdnYd1nafmNct4b6DYaIdDBBIaI6a9OZO8jXCDzjaYfmLpwRSGRImKAQUZ2Uk5ePLWcjAQDj2XpCZHCYoBBRnfTvpVg8SFfDRWWKAS2K3weMiPSHCQoR1Um/npamFo/t4gG5MW+FRIaGv5VEVOfcvp+OoMhkGBvJ8FpHN32HQ0TFYIJCRHXOjqC7AIBnvRzgaMWF2YgMERMUIqpTNBqB7RekBOXl9mw9ITJUTFCIqE45G5GIu8lZsFLK0Z+DY4kMFhMUIqpTtl+IBgAMbu0CUxNjPUdDRCVhgkJEdUaWOh97QqSVY9m9Q2TYmKAQUZ1x4Goc0nPy4G5nho4etvoOh4hKwQSFiOqMgsGxL7Vzg5GRTM/REFFpmKAQUZ0Qn5qNEzfvAwBebldfz9EQUVmYoBBRnbA96C40AmjfwAYNHSz0HQ4RlYEJChHVetm5+VhzMhwAMKpTAz1HQ0TlwQSFiGq9389H4X5aDurbmGE4u3eIagQmKERUq6nzNFh5LAwAMLlXIyjkvO0R1QT8TSWiWm1HUDRiUrLhaKXEax3d9R0OEZUTExQiqrXy8jX48ajUevLOs424cixRDcIEhYhqrV2XYhCZmAk7CwVGd+bgWKKaRK7vAIiIKpsQAhEJmVh+5BYAYEIPT5greLsjqkn4G0tEtUZwVDK2no3EiZsPcDc5CwBgbSrHG1099BwZEVUUExQiqhUu303ByJ8DkJOnAQCYGMvQwcMW0/s2hZWpiZ6jI6KKYoKiB3cSMvD2hvPwdLDAp4Obw8Ned1XLxAw1opMyYWVqApWZCaxN5ZAbFz9c6PLdFASEJcBCKYeNuVTe3dYc7nZmkMm41wjVDSmZuZiy6QJy8jTo7GmHyb0bo7OnHbt1iGow/vZWMyEEPvv7Mm7Gp+NmfDqO3biPyc82wru9m+BidDI2nYnEvsuxyM0XOs/r1NAW7zzbGH29HWFkJENihhpf7b+OreeiIETR11GZmaC1mwpt3GzwVg9P2FkoqqmGRNVLoxH48I9gRCZmws3WDKt8O0JlzhYToppOJkRxX2+GLTU1FSqVCikpKbC2ttZ3OBWy73IsJv92AQpjI3TwsEXA7QQAgFJupG2aBoB6Vkpk5uQhQ52v83wvR0v0b+GEzWcjkZyZCwDo1bQeTIyNkJKlRlJmLu4kZOgkOO0b2ODPyd24eyvVSj8evYWv9odCITfC9ne7wae+St8hEVEJKvL9zRaUapSpzsP8XVcBAJN6NcLM/k2x73Icvth9FTEp2TBXGGNY2/oY07mB9iabm69BXEo2Np2JxKbTd7QtLwDg7WyF+cN88Iynnc7rqPM0uHEvDRejk7Fwz3VciEzG5rORGNuFAwWpdjl9OwHfHAgFAHwxrCWTE6JahC0o1WjJvutYcSwM9W3McGhmL5gppEWjMtV5uBqTiqbOVrAuZTBfanYuNp+JxIErcRjaxhW+XTxKHJtSYP2pcMzbdRVWpnIcntkLjtamlVonIn0atSoAp28n4tUObvj6tTb6DoeIylCR728u1FZNwu6nY/WJ2wCAuUNbaJMTADBXyNGxoV2pyQkAWJuaYHKvxtg+pTve7O5ZZnICAL5dG6K1mwpp2Xn4fPfVp6sEkQG5fT8dp28nwkgGzOzfVN/hEFElYxdPIfGp2fj19B0kZ+YiJUt6pGXnQlOojcnVxhSfDm6B+jZmOs8VQuBKTCpkMsDD3gKWSjmEELiTkIkTtx5g0+k7yM0X6NOsHvq3cKq2OhkbybDgpVYY9uMp/HspFq+2j0cfb8dqe32iqrLtXBQAoHczR7g+9vtIRDUfE5RC0nLysOzhypMlCY4CzkckYe34Ttr+7uRMNT7+8xIOXL2nLWdnoYBSboTYlGztMTMTY8wd2rLap//61Ffhre4NsfpEOD77+zIWv9IaHRvacl8SqrHUeRr8GRgNABjViRsAEtVGTFAKcbBU4o2uHrAxM4G1mQlszBWwMpXD+GFCkacR+PbgDYTeS8OInwOw7PV2sDI1wYytQYhJyYaJsQxWpiZIzFAjMUMNQFosqn0DW/T0csCQ1q5o6GBRWghVZka/ptgTEoe7yVkYu+YMFHIjdGpoiz7NHPFKezfYchoy1SAHr95DQoYajlZKPMcWQaJaiYNkK/ra2bl4b9MFnLj5AAWzdjUC8HSwwLLX28Gnvgpp2bmISsxCanYuWtVXwUJpGHlg2P10rDgahlO3HiAu9VHLjkJuhCGtXDCmSwO0b2DLBd7I4PmuOYMTNx9gap8m+GhgM32HQ0TlpPdBsnfv3sXYsWNhb28Pc3NztG3bFoGBgdrzQgjMmzcPrq6uMDMzQ+/evXHlypWqCKXSWZuaYO34ThjVyR0aISUnL7erj13Temi7fKxMTdDC1RpdGtkbTHICAI3rWeKbEW0QMOc5HJrZC3OHtkBLV2uo8zTYHnQXr/wUgIkbA5GWnavvUIlKFJmQiRM3HwAARrJ7h6jWqvRvz6SkJHTv3h19+vTB3r174ejoiLCwMNjY2GjLLFmyBEuXLsX69evRtGlT/N///R/69++P0NBQWFlZVXZIlc7E2AgLX26Fbk0cYKEwRt/m1TfotTLIZDI0cbREE0dLjO/WEJeiU/Db6Tv4JzgGh67dw/AfT2HVGx3RuJ4lAOBiVDJ+ORmO3DwN5g9ryanKpFfbzkcCAHp6OcDdzlzP0RBRVan0Lp5PPvkEp06dwokTJ4o9L4SAq6srZsyYgdmzZwMAcnJy4OTkhMWLF2PSpEllvkZNXQfF0F2KTsakXwMRm5INK6UcM/o3xeFr9+AflqAt42ilxE9jO6CDh60eI6W6Kjdfg+6LjiA+LQcrxrTHC61c9B0SEVWAXrt4du7ciY4dO+K1116Do6Mj2rVrh9WrV2vPh4eHIy4uDgMGDNAeUyqV6NWrF/z9/Yu9Zk5ODlJTU3UeVPlau9lg59Qe6NTQFmk5efhi91X4hyXA2EiG4W1d0dTJEvFpORi1KgCbz0TqO1yqg3ZdjEF8Wg7sLRToV8NaLomoYio9Qbl9+zZ++ukneHl5Yf/+/Zg8eTLef/99bNy4EQAQFxcHAHBy0r25ODk5ac89buHChVCpVNqHuzv7natKPSslNr3dBeO6esDOQoHx3RrCb1ZvfDeqHbZP6Y7nfZyRmy/wnx0hmLYlCFGJmfoOmeqIjJw8LN53HQDwVg9PKORcZ5KoNqv0Lh6FQoGOHTvqtIa8//77OHfuHAICAuDv74/u3bsjJiYGLi6PmmcnTpyIqKgo7Nu3r8g1c3JykJOTo/05NTUV7u7u7OLRAyEEfvILw1f7QyEEoDA2gm9XD7zXpwl3TKYq9fX+UCw/egvudmY4+EEvruNDVAPptYvHxcUFLVq00DnWvHlzREZKXQLOzs4AUKS1JD4+vkirSgGlUglra2udB+mHTCbDlN5N8M973dG1kT3U+RqsORmOXkuO4uv9oUhIzyn7IkQVFJWYiVUPt4r49IUWTE6I6oBKT1C6d++O0NBQnWM3btyAh4e0k66npyecnZ1x8OBB7Xm1Wg0/Pz9069atssOhKtLazQabJ3bGhreeQQsXa6Tl5GH50VvovvgI5v5zmV0/VKkW7r0GdZ4G3RrbY2BLjj0hqgsqfZrxBx98gG7dumHBggUYMWIEzp49i1WrVmHVqlUApL/AZ8yYgQULFsDLywteXl5YsGABzM3NMXr06MoOh6qQTCZDr6b10LOJAw5cjcNPx8JwMToFGwLuYEPAHXg5WqJ7Ewf0aOKA7k0cdDZIJCqvgLAE7AmJg5EM+N/QFlxIkKiOqJKVZHfv3o05c+bg5s2b8PT0xMyZMzFx4kTteSEEPv/8c/z8889ISkpC586d8eOPP8LHx6dc1+c0Y8MkhEBAWAJ+8gvDyVsPUPiTVd/GDGvHd0IzZ8Nf54YMx+376Xh743ncvp8B3y4e+GJ4+e4RRGSYKvL9zaXuqUokZ6oREJaAk7ce4NC1e7iXmgMrpRw/je2AHl4O+g6PDJxGI7DePwJL9l9Hdq4GDpYKHPygF/eMIqrhmKCQQUnKUGPSr4E4G5EIuZEMC15qhRFcopxKEJ2UiZnbLuJsRCIAoEcTByx+tTXq25jpOTIielpMUMjg5OTl4+M/L+Gf4BgAQJ9m9fBiW1f0a+4EK1MTPUdHhiIjJw9Dl5/E7fsZMFcY49PBzTH6mQYcd0JUS1Tk+9twdrKjWk0pN8Z3I9vCw84cPxy5haOh93E09D4UciP0a+6Imf2boYmjpb7DJD373z9XcPt+BpytTfHH5K7ca4eoDmMLClW7W/Fp2HkxFrsvxeD2/QwAgImxDG/3bIRpzzWBuYJ5c120/UI0Zv5+EUYyYMvELujcyF7fIRFRJWMXD9UIQghcjU3FNwdu4Mj1eACAq8oUc19siYEtnfUcHVWn2/fTMWTZSWSq8/FBv6aY3s9L3yERURXQ60qyROUlk8nQ0lWFNeM6YpVvB9S3MUNMSjYm/RqIaVuCkJih1neIVA1y8vIxbUsQMtX56Oxph6nPNdF3SERkAJigkN7JZDIMaOmMQzN74d3ejWEkk3atHfCtH/ZdjtV3eFSF8vI1eH9LEK7EpMLOQoHvR7WDsREHxBIRExQyIGYKY8we5I0dU7qjqZMlHqSrMfm3C5j8ayDuJmfpOzyqZBqNwOy/QrD/yj0ojI2w/PV2cFaZ6jssIjIQTFDI4LRxt8GuaT0wtU8TGBvJsO9KHPp+cww/Hr2FnLx8fYdHlUAIgfm7r+KvC9EwNpJh+eh26NaEC/gR0SMcJEsG7XpcKv73zxWcDZcW7fKwN8ewNq7o2bQe2rrbwMSYOXZNtPTgDfxw+CYA4NuRbfBSOzc9R0RE1YGzeKhWEULgn+AYfLnnGu6n5WiPWyrlGNjSGf8d0hw25lwCvaa4FZ+GfkuPAwC+GNYSvl0b6jcgIqo2XKiNahWZTIbh7eqjb3NH7A2Jw4lbD3Dy5n0kZebirwvRCAh7gB9eb4eODe30HSqVw6YzkQCAfs2dmJwQUYmYoFCNYWVqghGd3DGikzs0GoFzEYmY/dclRCRkYuSq05jZvyne7dUYRpwFYrCy1Pn4KzAaADC2SwM9R0NEhowd+FQjGRnJ0LmRPXa/3xPD27oiXyPw1f5QPPfNMXy1/zquxKSgBvZe1nq7L8UgNTsP7nZmeNarnr7DISIDxgSFajRLpRzfjmyLJa+2hoXCGBEJmfjxaBgG/3ASfb/xw6Gr9/QdIhVS0L0z+hkPtnQRUamYoFCNJ5PJMKKjO8582g/fj2qLgS2doJQb4faDDLy98Tzm7bzC6ckG4PLdFARHJcPEWIbXOnLWDhGVjmNQqNawVMoxrG19DGtbH+k5efj24A2sORmO9f4ROBueiCWvtoaTtbQQmEwG2FsoIJPxr/jqsvms1HoyyMcFDpZKPUdDRIaOCQrVSpZKOf47pAW6N7HHR39cwtXYVAxZdlKnTLfG9lj9RkdYKPlrUNXSc/LwT9BdAMCYzhwcS0RlYxcP1WrPeTth7/Se6N2sHh5vLPEPS8Dk3wLZ/VMN/g66iwx1PhrXs0BnT04HJ6Ky8U9HqvWcrE2x/s1ndI5diEzC2F/O4MTNB/hgWzCWvd6em9RVEXWeBmtOhgMAxnT2YLcaEZULW1CoTmrfwBarfDtCYWyEPSFx+HRHCKclV5G1p8IR/iADDpZKDo4lonJjgkJ1Vg8vB/zwelsYyYCt56Iw5pczuBiVrO+wapXYlCztnjtznveGlamJniMiopqCCQrVaYN8XLD4ldYwMZbBPywBw348hXd/C0RwVDLCH2RoH1lqjlN5Egv2XEemOh8dPWzxcvv6+g6HiGoQjkGhOu+1ju7o0sge3x26ie1B0dh7OQ57L8fplLFSyjG2qwfe7N4Qjlameoq0ZvEPe4BdF2NgJAM+H9aSY0+IqEK4mzFRIaFxaVh6MBQBYQko+MXI1whkPmxBUciNMKKjG6Y956VdU4WKys3XYPAPJ3DjXjp8u3jgi+E++g6JiAxARb6/maAQlUGjETh8PR4rjt1CUGQyAMDBUomVY9tzB+USbDpzB5/uuAw7CwWOfNgLNuYKfYdERAagIt/fHINCVAYjIxn6t3DC9ne7Yes7XeDtbIUH6Tl4ffVpbDpzR9/hGaQtD1eNndK7MZMTInoiTFCIykkmk6FLI3tsn9INg1u5IDdf4NMdlzFn+yXEpmTpOzyDcS02FZfvpsLEWIaX23NaMRE9GQ6SJaogc4Ucy0e3Q4tj1vj6QCi2nI3ClrNRaN/ABi+0ckHvZvXgbmcOpdxY36HqxZ+B0QCAfs2dYGfB1hMiejJMUIiegEwmw3t9msCnvgrLj9zE+TtJuBCZjAuRyfi/f69BJgOcrU3hbmeOl9rVx6hO7nViFktuvgZ/P9xz59UObD0hoifHBIXoKfRqWg+9mtbDvdRs7A2JxZ7LcbhyNwUZ6nzEpmQjNiUbZ8MTcfzGfSx+tTWsa/lCZUevxyMhQw0HSyV6Na2n73CIqAZjgkJUCZysTTG+uyfGd/eEEAKJGWpEJmbi1K0H+P7wTey9HIcrMalYProdWrvZ6DvcKvPHw+6dl9vXh9yYQ9yI6MnxDkJUyWQyGewtlWjXwBZTn/PCH5O7wc3WDJGJmXjlJ3+sPRleK/f9eZCeg6PX4wEAr7F7h4ieEhMUoirW1t0G/77fEwNbOiE3X2D+7quYuDEQyZlqfYdWqf4Ouos8jUAbdxt4OVnpOxwiquGYoBBVA5WZCVaO7YDPX2wJhbERDl27hxe+PwH/sAe1ojVFCKGdvcPBsURUGTgGhaiayGQyjOvWEB08bDFtSxDCH2Rg9Ooz8HSwwAutnPFCKxe0cLGukbN9gqKScT0uDQq5EV5s7arvcIioFmALClE186mvwq5pPfD6M+5QyI0Q/iADPx4Nw+AfTuLF5adw4ub9GteqsuZkOABgWBtXqMxr90wlIqoe3IuHSI/Sc/Jw+No97AmJxbHQ+8jJ0wAAujW2x8eDvNHW3Ua/AZZDdFImnl1yFBoB7JvRE97O/J0kouJxLx6iGsJSKcewtvXxs29H+H/yHN7q7gmFsRH8wxIw/MdT+HzXFeTla/QdZqk2+EdAI4DuTeyZnBBRpanyBGXhwoWQyWSYMWOG9pgQAvPmzYOrqyvMzMzQu3dvXLlypapDITJo9pZK/G9oCxz5qBdeebiHzbpTERi37iySMgxzxk96Th62no0CALzdo5GeoyGi2qRKE5Rz585h1apVaN26tc7xJUuWYOnSpVi+fDnOnTsHZ2dn9O/fH2lpaVUZDlGN4GZrjm9GtMHKsR1grjDGqVsJGPbjKYTGGd7vxx/no5CWk4dG9Sy4ciwRVaoqS1DS09MxZswYrF69Gra2ttrjQgh89913+PTTT/Hyyy/Dx8cHGzZsQGZmJjZv3lxV4RDVOIN8nLF9Sje420mLvD3//XH0X+qHmb8HY/2pcEQlZuo1vnyNwNpT0uDYt7p7wsio5s0+IiLDVWUJynvvvYfBgwejX79+OsfDw8MRFxeHAQMGaI8plUr06tUL/v7+xV4rJycHqampOg+iusDb2Ro73+uBZ5vWg0YAN+PTsf3CXczbdRX9v/XD1rORepvxc/DqPUQlZsHG3ETbJUVEVFmqZB2UrVu34sKFCzh37lyRc3FxcQAAJycnneNOTk64c+dOsddbuHAhPv/888oPlKgGsLVQYONbzyA+NRshd1NwKToFfjfuIzgqGZ9sD8HJWw+w4OVW1b4R4dqHU4vHdG4AM4Vxtb42EdV+lZ6gREVFYfr06Thw4ABMTU1LLPf4YlRCiBIXqJozZw5mzpyp/Tk1NRXu7u6VEzBRDeFobYq+1qbo29wJ0/t6YeXxMHxz4AZ2X4rFxehkdG/soC1rqZRjaBtXtHZTVcnCb0GRSTgbkQgTYxne6Nqw0q9PRFTpCUpgYCDi4+PRoUMH7bH8/HwcP34cy5cvR2hoKACpJcXFxUVbJj4+vkirSgGlUgmlUlnZoRLVWEZGMkzp3QRdGtnj/S1BiErMwtbEKJ0yv5wMh099a4zp7IEX27jCQll5v+6rjt8GAAxrWx9O1iX/IUJE9KQqPUHp27cvQkJCdI69+eab8Pb2xuzZs9GoUSM4Ozvj4MGDaNeuHQBArVbDz88PixcvruxwiGq19g1s8e/7PfF30F2kZedqj9+KT8eekDhcvpuKOdtDsPzILWyc8Awa17N86te8k5CBfVekrtp3nuXUYiKqGpWeoFhZWcHHx0fnmIWFBezt7bXHZ8yYgQULFsDLywteXl5YsGABzM3NMXr06MoOh6jWU5mZYFy3hkWO/2+oGn8FRmO9fwTuJmdhxMoAbJzwDFq6qp7q9X45EQ4hgN7N6qEpdy0moiqil5VkP/74Y8yYMQNTpkxBx44dcffuXRw4cABWVrzZEVUWOwsFJj7bCDundkdLV2skZKgxatVpBN5JfOJrJmao8Ueg1JXE1hMiqkrci4eoDkjJysWE9edw/k4SzEyM8bNvBzz7BAurfX/oJr49dAOt6quwc2r3GrnzMhHpD/fiISIdKjMTbJzwDHp6OSArNx9vrT+HbeciK3SN7Nx8bAyIAABMfLYRkxMiqlJMUIjqCHOFHL+M64hhbV2RpxGY/VcIluy7Do2m7EbULHU+/u/fq0jIUMPN1gwv+DhXQ8REVJdVyUJtRGSYlHJjfDeyLTzszPHDkVtYcSwMUUlZWPCSD6yKWehNCIGDV+/h811XcTc5CwAwtU8TyI35tw0RVS0mKER1jEwmw8wBzeBuZ44520Ow62IMTt68j/f6NMHYLh4wNTFGljofx0LjseVcFI7fuA8AcFWZ4n9DW2Jgy+LXKyIiqkwcJEtUh52+nYD/7AjB7fsZAKQkpG0DGxwLvY9MdT4AwMRYhok9G2Hqc01gruDfNET05Cry/c0EhaiOy8vX4K8L0fj24E3EpWZrj9e3McPg1i4Y1ckdjSphgTcioop8f/PPIaI6Tm5shJGdGmBY2/r4/XwU4lNz0Le5I9q623CmDhHpDRMUIgIAmJoYc+M/IjIYHIpPREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGRwmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHBYYJCREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGRwmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHBYYJCREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGZxKT1AWLlyITp06wcrKCo6Ojhg+fDhCQ0N1ygghMG/ePLi6usLMzAy9e/fGlStXKjsUIiIiqqEqPUHx8/PDe++9h9OnT+PgwYPIy8vDgAEDkJGRoS2zZMkSLF26FMuXL8e5c+fg7OyM/v37Iy0trbLDISIiohpIJoQQVfkC9+/fh6OjI/z8/PDss89CCAFXV1fMmDEDs2fPBgDk5OTAyckJixcvxqRJk8q8ZmpqKlQqFVJSUmBtbV2V4RMREVElqcj3d5WPQUlJSQEA2NnZAQDCw8MRFxeHAQMGaMsolUr06tUL/v7+xV4jJycHqampOg8iIiKqvao0QRFCYObMmejRowd8fHwAAHFxcQAAJycnnbJOTk7ac49buHAhVCqV9uHu7l6VYRMREZGeVWmCMnXqVFy6dAlbtmwpck4mk+n8LIQocqzAnDlzkJKSon1ERUVVSbxERERkGORVdeFp06Zh586dOH78ONzc3LTHnZ2dAUgtKS4uLtrj8fHxRVpVCiiVSiiVyqoKlYiIiAxMpbegCCEwdepUbN++HUeOHIGnp6fOeU9PTzg7O+PgwYPaY2q1Gn5+fujWrVtlh0NEREQ1UKW3oLz33nvYvHkz/vnnH1hZWWnHlahUKpiZmUEmk2HGjBlYsGABvLy84OXlhQULFsDc3ByjR4+u7HCIiIioBqr0BOWnn34CAPTu3Vvn+Lp16zB+/HgAwMcff4ysrCxMmTIFSUlJ6Ny5Mw4cOAArK6vKDoeIiIhqoCpfB6UqcB0UIiKimseg1kEhIiIiqigmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHBYYJCREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGRwmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHBYYJCREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGRwmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHBYYJCREREBocJChERERkcJihERERkcJigEBERkcFhgkJUl6REAxd+BWIv6TsSIqJSyfUdABE9ASGA3CwgOxnISi7633w1YOMO2HoCtg2B6HPA+bXAzQOA0EjXaPwc0H0G4PksIJPppx5ERCVggkJkiPLUUlKRcAtICgcSw4G0WCn5yEqSEpF89ZNd26kVEH8FCDsiPVzbA30+BZr0ZaJCRAaDCQqRochTA7ePAld2ANf3ADkpZT9HZgyYqgAzG8DUBjCzlf5fZgwkR0rJTfo96XjbMUCH8YCDF5AUAfgvB4J+BWIuAJteARr2BPrOBdw7VWk1iYjKQyaEEPp68RUrVuCrr75CbGwsWrZsie+++w49e/Ys83mpqalQqVRISUmBtbV1NURKVAWEAO6HArePSY+Ik4A67dF5SyfAuZXUTWPnCajcpETD1EZKQsxsAYVl2a0e6kzAWAEYF/P3SPp94NR3wNnVQH6OdKzFcGDYj4DSsjJqSUSkVZHvb70lKNu2bYOvry9WrFiB7t274+eff8Yvv/yCq1evokGDBqU+lwkK1VhpcVIyEnZU+m96nO55S2egxTCg5XDAvQtgVE3j2FOigWOLgOBN0hiV+h2BMX8A5nbV8/pEVCfUiASlc+fOaN++PX766SftsebNm2P48OFYuHBhqc9lgkJ6l58LxF8FYoKlLpR63oBrW0Dlrtuioc4AIgOkhCTsqDT2ozC5KeDRDWjUW3o4taq+pKQ40eeBTa9K41wcWwK+OwArJ/3FQ0S1SkW+v/UyBkWtViMwMBCffPKJzvEBAwbA39+/SPmcnBzk5ORof05NTa3yGKkGys8F8nIK/awGku9I4y2SIgAzO2kcRnFdHYUJIX1BFwxGzUoGUmMeXiccSAgD4q896hIpzMxO6prJTgayU4DczMcKyACX1kCjPkDjPlIriYnpU1S6krl1BMbvAX4dLiVT6wYBb/wD2JTeqklET+HS74CVszSjjrT0kqA8ePAA+fn5cHLS/cvMyckJcXFxRcovXLgQn3/+eXWFRxWRnwvc9gPunJJaAwoGa9q4A27PFE0G1JnA3fOAlQtg1/hRa4EmH4i9CIT7AUl3HiUGOamAuYM0Vda2IWDfGHDvLL1OgaQIwH8ZELQJyMsqPd7ru4FX1+mOr8jNlqbfxlyQWkRig6XkpCymKsClLWDtCty7IrWoZCVKj8Ks3aRkpHEfwLM3YGFf9rX1yakF8NY+YOMwIPE28OtLwDt+HJNCVBWizwPbJ0rjxN71lwaxEwA9z+KRPTa4TwhR5BgAzJkzBzNnztT+nJqaCnd39yqPjwrR5APp8Y8Sh4z70pf69d0lf5mbOwDNh0pjKrJTgKt/Azf2P2pVUFoDLm2kZCPiZPmSAgCQGUljJBr3kb5AL28HRH7xZS2dpMRG5SbNjLl5AFg/+OH4Cnvg0jbgyJdAanTR55pYPBqMaun4aE0RO0/AqaX0c+HPa2621OqQkyYlaYVn19S06bt2jYA39wFr+ktTnf+dCbz0c82rB5GhC/lT+m++Gtg1HRi3W7/dvAZELwmKg4MDjI2Ni7SWxMfHF2lVAQClUgmlUlld4REAaDTSF1O4nzSYM/xEydNeLeoBTQdKU1sLEpi4S0DmAyBwnfQozNJJSlhyUoGIE4+OK62lqa4urR/NVFFYAhnxj7pp7l2R4oo+Kz0KNO4L9JgBuBWaIiszBuSKRz9HnQO2jJRaSH7pBygspFYPALByBZoOkFpEXNsC9ZpXvOvFxBSo36FizzFkqvrAK2ukhO7SNqn5ud1YfUdFVHto8qVlBQrcOQVc2AB0fFN/MRkQvSQoCoUCHTp0wMGDB/HSSy9pjx88eBDDhg3TR0hPRp0hfQka0hiCishTSy0QBWMrkiKkBcGSwqVulsfHWMiMpFaBguTBpS3g8zLg0R0wMtYtm58LhB+XWk1C9wIm5kCLF4GWL0kLg2nygfvXgZggIDMBaNBV+nIva3wIACRHSeuF3PaTupWemSglFWVx7wRMOAj89opUR0CqS88PpWuYmJV9jbrGoyvQ5z/AkS+Afz+S/o0cm+s7KqLaITJAmslnqgJ6zAQOzQUO/g9oOgiwdpHuo1f+BlLvAl3eBeR16w91vU8zXrlyJbp27YpVq1Zh9erVuHLlCjw8PEp9rkHM4slKBja9JnUTjPwVMDbRTxxP4n4oELgBuLi59G4VYwXQoMujGSYubYsmIjVR+n3gwGdSt0+3qVIXDpVMowF+e1lKCut5AxOPAgpzfUdFVPPt/kDagqLtWODFH6Qu1buBQLMXpIH0/suAlEiprNdA6bumhicpNWKaMSAt1LZkyRLExsbCx8cH3377LZ59tuxRzAaRoESdAzYMAfKygVavAS+tMtx+w6ykR4M/bxwAIgvNlFJYSWMqCsZWFB5nYe1WvhYNqv3S44GVPaQp1Z0mAoO/1ndEVNPkZulu1fD4/2cn687CA6R7kWs7qYW04A8JTb7URWysqNkDt/PzgG+aSi3IY7dLW03cuwL8/CygyXtUztwBUKdL3zUVTVJy0qU/Kp+0dVijqfTvtRqToDwpg0hQAOnLfuvr0oep41vA4KX6HUSYp5bGdNy78qjLJiFMmmpbmMxYakLs+Ka0YVxtaBWhqhd2RJrRAwBv7pXWb6G6K+WuND4t5oLU1VrQ9Qs83GYhQnoUDK7Py36617N0lpIc7Vg4GWDfREpeXNoCjXoBTj4Vuwdnp0orKbcaATh6P118FXXrsNQyaW4PfHjj0R+DxxYBxxZKU/u7vS+N+4o6A2weJc1SLC5JEQJ4cFP694g+92j/rswHgJGJNPOxUW/pPbJ2LTmmtDip2z0mWPqvtSsw9s9KrTYTlOp0+S/gzwkAhLQzbP9qng6dpwbunJRmslzbJd0IimPbUPoldusI+LxS+oeUqCT/TJX277FrDLx7iuN26hKNRvryu/o3cOsQ8OBGxa8hM9LdM6ogqSn4r7zQ50mTJ71GzAUp0SkPu8bSrEGfl6VtIsritwQ4+qWU/Ezyk9YiqS7/vAcE/Sb9cTvk20fHhZAmAth66rZg3/YDNo+UkhSVu3QPN7WRxkBGn5fGqVQ2M1vg4/BK/cObCUp1C9wA7Hpf+v8BX0rjGqpKaszDNTseZrnxV3V3tbVwBDx7Ptq/xbahNCWW4yyoMmQlAyu6SDsrd3sfGPCFviOiqpSZKK1PdOvQw8Gahabjy4ykAe8FLWkFXTWafOmv/4K1i6ycHyYktoDS6sm+7DITpSRFafUomclKlrqtY4KltZVuH9NtpRn6A9BhXOnX/aX/o9mA7l2Acbt0Z/5VlTw18HUTqatq3G7pnl0et/2ALaOKWQASgLFSGjPo2RNwaPro/c9MeLS9xp1TUrdPSUytH85kfNit5tpOWrOKCUr5GVyCAgCnfgAO/hcwkkszReq3r7xrp9wFru2UbhBRp4ueL1hvpKQZNUSV6foeqWtTZgS8fah2Ta2u6zQa4OZ+4OJW6Y+gx7uHFVaA92Dp4dnTsP7wyUmT1lkK3gyEHZbG0E2/WPI4uqwkYEkjae8phaU0zuOZd4AXvqrcuFKigYAfpe53t07SZpw5acC2MVLLzcyrFbtnZzyQuvELEkJ1ujR43aNbjWjRZIKiD0IAf4yXmj/tmwCTjkvrbDyJnHQp0w07Ks2cuH9d97zbM0DD7o/W7LDx4AJaVL3+nABc/hNwbCElKU/6WSfDkJ8rLRh26nvg/jXdc7aeD79YhwFN+hn+sgq52cC3LaSWgxEbpbiLc2WHdM92aCZ1zW8ZJR0fvhJo+/rTx3E/VPrD9dI2QJP72EkZAAF0fhd4ftHTv1YNYvB78dRKMpnUjxh1Vuo/3P8fYOj35XuuEFI/a9gRIOyYNCBK5wMtkwY5tRwONH9RWkCLSJ+eXywlz/FXgV9fBkZv091+gAyTRiMtkJiVBCSGPZrdF3lGWhARkBZM7DAOaNL/0UrPNYmJKdBhPHDiG+Ds6pITlFuHpf826Qc0ex7oNRvwWwzsniHV26lFxV87JVpKfC5vl+7pBRr2BNq8LrWAX9v9aDuM1q9V/DXqELagVLbbftIeJhDAyE1A8yEll83Pkz7Mp74H7oXonrPxkJZyb9RHWsGT296ToYk6K+18nJ0i7cLsu13aEoCqX36eND4k7vKjcRnxV3Wn7WrypOREaIq/hoUj0HWKNGjTVFUdUVedlGjgu9bSFhjv+kvj8AoTAvi2pTSwdOxfUpKi0QCbRwC3Dko/j/2r/K+nzgT+fldqQS8gMwKaPg/0+EBaJLJAfu7DFbRl0j2+jmEXj74d+C/g/4O0s+2IjUDDHrpdMNmpUh9vwDJpOh4grbTa+LmHm8o9J+2FQmTo4i5LU48z4qXPrO/fgG3pCy1SKbJTi477kJs9muliZCyt/hwTJD3uXZEGj6ZE6a6dURa5mTQLxLXdowGRbp1q/CJgOrb5SmP3Oowv2podf00a7C03BWZHPBq7kXgbWP6M1IL9xj/S1NyyZCVLs2uiTgOQSeMAWw6XWm6YsBfBBEXf8nKAX/oCcQ9bRdw6SVm0pRMQuF6amlwwCtvcAeg8Geg0ga0kVDMlhAG/DpeSbduGwLsBXGm2InLSgNB9UmvqrUNFt5gozFihO2vv8XMOTR+NTXNuLc3KKCAzfrSBZW1KREoScVLaR8rEXBqIWnhAr/9y4MCn0h5evtt1n7d3NnBmpdTNM/FY6QuVpcdLXZz3QqT3dvQfQIPOVVKd2oJjUPRNrpRWBjy2SJrnHn0O2Dpat4xDM2n/l7ZjeDOnms2+MfDWfmnKZlIEcPwroN9cfUdl2NQZwI190liFW4d0p8ea2T3aOkMIaXEydZr0c75amk7q3Epq+XBpLbVc2XpK00ENdTVrffDoDji2lHYYD9qku/xDWMH4k75Fn/fsLKl87EXpj8mSxonEX5fu64lhUveY7w7A2afy61GHsQWlqqXHA6d/As79IrWstHxJanJs0IUzb6h2ubZbmjppZCIt4lavmb4jMizqTGl8w5Ud0nTYwmtZ2DWWlglo+ZI0M+rxe0N+njTWR50GWNevWXt/6VPgemDXdKllb9oFqYtMnQksbii1VE05U/wKsse/ljbItGkATD2v2+IUdU5affb6vwCEVMb3bylRpzKxi8cQ5amlwWmGPkWP6EkJIU3VvLFPmrUwbheTcEAaK3Lq+6JJiY3Hw6Tk4aqnfK8qnzoTWNpcWjOk5UvSFOKIk8CmV6R1Uj64XPz7rs4ElrWXFiR8ZpKU4CRFSP+WBQu7AUCzwdK+VFyZu9zYxWOIqmN1QiJ9ksmA55dIM9kiTkjrP7QZpe+o9CsrCVg/9FEXjU0DafBky5ekVViZlFQthTkw9Dvgr4lSy1VanNQdBgBNniv5/VeYA33+A+ycBpz9WfeckQnQeiTQ/X22ElYxJihEVHlsPYBes4DD84H9nwJNBxrWaqPV7fw6KTlxaAq89LM0boRJSfVq+ZK0Id/WsUBkgPQApAGypWk7Rkq2E24+Wjbe1hPwGsC1qKoJu3iIqHLlqYGVPYAHodLCgq9tqJuDN/NygO9aAen3Km91Unpy8deATa9JU7JlxsDHt2veInS1ALt4iEh/5ArgxWXSFM9rO6U9qgZ+WTWvlXZPWpo9M1HqTslOlpY6LyCTSa0WTfqXvCdLVbn0u5ScWLlKO4iTfjk2l7Zl2P2BNAWbyYnBY4JCRJWvQWdg+E/A9reBgOXS2IvOk57+uvHXgeu7gbuB0mqpaTHle56VK9DeVxo7kJ8rDXhMipAGrTq3ktYOsaz39PEV0GgA/2XS/3d5l2PQDIWVM/D6Fn1HQeXEBIWIqkbr14CUSGk8yt7ZgMpN2gW3ou7fkNajuPp30Y0zIZOmd1o6SSutmtk8XBX04TiPvCwgdK+UyPgtlh4lsXYDrF0ePVeulBZYLG6tjLLcOih1cSmspH1tiKjCmKAQUdXpMVNaYTZwvbQD8tDvgTYjy35eXg5wdScQuE7a2buAkYm0FUSj3lLXjXMrQGlZ9rWu75ZiCD8ubYZXMOjR2ASIvSRt8JkaLT0KizoLjNsprVtUEad+kP7bcXzN39eGSE84SJaIqlZ+HrBtLHBjr/Rzm9HAC18Vn1jkqYHTP0rdI5kJ0jGZkbR5W8uXpV1nn2bsQJ5aSkoen0mTnSptTZGd/OjYhY3Smi5mtsBbB4B6Tcu+vkYDhB+T9icykgPTL3HGB1EhXKiNiAyLJl9aAt9vsbRgoX0TYPA3gNszj7Z6CD8B/Puh1DUCSCumtn8DaOerny95dSaw8UVpqwqbBsCEQ4CV06PzQjxavKvgEXtR2jEYAFqPAl7+udhLE9VVTFCIyDBFnAK2T5S2uQek1pF63tKur7ePScfMHYABXwCtRlT/zJvHZSQAa/pL+604NJO6lLKTpR1sE8OkmUOPM1YC9dtLg4TtPKs7YiKDxgSFiAxXZiJw4DPg5kEgI77QCRnQ8S2g738Na3G3xNvSRoiZD4qeM1YATj7S7sGu7aRHPW/ulUNUAiYoRGT4hJD2OokJlgapevaUvuANUWI4cGU7IDd9NFvI2lXa2K/wRnJEVCou1EZEhk8mk77ka8JGa3aeQM8P9R0FUZ1SB9efJiIiIkPHBIWIiIgMDhMUIiIiMjhMUIiIiMjgMEEhIiIig8MEhYiIiAwOExQiIiIyOExQiIiIyOAwQSEiIiKDwwSFiIiIDA4TFCIiIjI4TFCIiIjI4DBBISIiIoNTI3czFkIAkLZtJiIiopqh4Hu74Hu8NDUyQUlLSwMAuLu76zkSIiIiqqi0tDSoVKpSy8hEedIYA6PRaBATEwMrKyvIZDJ9h6OVmpoKd3d3REVFwdraWt/hVCnWtXZiXWunulRXoG7Vt6bVVQiBtLQ0uLq6wsio9FEmNbIFxcjICG5ubvoOo0TW1tY14oNSGVjX2ol1rZ3qUl2BulXfmlTXslpOCnCQLBERERkcJihERERkcJigVCKlUom5c+dCqVTqO5Qqx7rWTqxr7VSX6grUrfrW5rrWyEGyREREVLuxBYWIiIgMDhMUIiIiMjhMUIiIiMjgMEEhIiIig8MEpZDjx49j6NChcHV1hUwmw99//61z/t69exg/fjxcXV1hbm6OQYMG4ebNmzplwsLC8NJLL6FevXqwtrbGiBEjcO/evSKv9e+//6Jz584wMzODg4MDXn755aqsWhELFy5Ep06dYGVlBUdHRwwfPhyhoaE6ZYQQmDdvHlxdXWFmZobevXvjypUrOmVycnIwbdo0ODg4wMLCAi+++CKio6N1yiQlJcHX1xcqlQoqlQq+vr5ITk6u6ipqVWddC5dt27YtZDIZgoODq6pqRVRnXW/cuIFhw4bBwcEB1tbW6N69O44ePVrldSxQWXVdtWoVevfuDWtra8hksiKfzYiICEyYMAGenp4wMzND48aNMXfuXKjV6qquoo7qqm8Bfd6jKqOuiYmJmDZtGpo1awZzc3M0aNAA77//PlJSUnSuUxvuT+WtawF93Z8qTJDWnj17xKeffir++usvAUDs2LFDe06j0YguXbqInj17irNnz4rr16+Ld955RzRo0ECkp6cLIYRIT08XjRo1Ei+99JK4dOmSuHTpkhg2bJjo1KmTyM/P117rzz//FLa2tuKnn34SoaGh4vr16+KPP/6o1roOHDhQrFu3Tly+fFkEBweLwYMH69RFCCEWLVokrKysxF9//SVCQkLEyJEjhYuLi0hNTdWWmTx5sqhfv744ePCguHDhgujTp49o06aNyMvL05YZNGiQ8PHxEf7+/sLf31/4+PiIIUOG1Mq6Fnj//ffF888/LwCIoKCg6qimEKJ669qkSRPxwgsviIsXL4obN26IKVOmCHNzcxEbG1uj6vrtt9+KhQsXioULFwoAIikpSed19u7dK8aPHy/2798vwsLCxD///CMcHR3Fhx9+WC31LFBd9RVC//eoyqhrSEiIePnll8XOnTvFrVu3xOHDh4WXl5d45ZVXdF6rNtyfylvXAvq6P1UUE5QSPJ6ghIaGCgDi8uXL2mN5eXnCzs5OrF69WgghxP79+4WRkZFISUnRlklMTBQAxMGDB4UQQuTm5or69euLX375pXoqUk7x8fECgPDz8xNCSAmZs7OzWLRokbZMdna2UKlUYuXKlUIIIZKTk4WJiYnYunWrtszdu3eFkZGR2LdvnxBCiKtXrwoA4vTp09oyAQEBAoC4fv16dVStiKqqa4E9e/YIb29vceXKFb3fAKqqrvfv3xcAxPHjx7VlUlNTBQBx6NCh6qhaEU9S18KOHj1a4hf245YsWSI8PT0rLfYnUVX1NcR71NPWtcDvv/8uFAqFyM3NFULUnvtTcR6vawFDuj+VhV085ZSTkwMAMDU11R4zNjaGQqHAyZMntWVkMpnOgjmmpqYwMjLSlrlw4QLu3r0LIyMjtGvXDi4uLnj++eeLNMNWt4KmQDs7OwBAeHg44uLiMGDAAG0ZpVKJXr16wd/fHwAQGBiI3NxcnTKurq7w8fHRlgkICIBKpULnzp21Zbp06QKVSqUtU92qqq6A1A04ceJE/PrrrzA3N6+O6pSqqupqb2+P5s2bY+PGjcjIyEBeXh5+/vlnODk5oUOHDtVVPR1PUtenea2C19GXqqqvId6jKquuKSkpsLa2hlwubUNXW+5PJV2ncF0Bw7s/lYUJSjl5e3vDw8MDc+bMQVJSEtRqNRYtWoS4uDjExsYCkD7YFhYWmD17NjIzM5GRkYFZs2ZBo9Foy9y+fRsAMG/ePHz22WfYvXs3bG1t0atXLyQmJuqlbkIIzJw5Ez169ICPjw8AIC4uDgDg5OSkU9bJyUl7Li4uDgqFAra2tqWWcXR0LPKajo6O2jLVqSrrKoTA+PHjMXnyZHTs2LGqq1KmqqyrTCbDwYMHERQUBCsrK5iamuLbb7/Fvn37YGNjU8U1K+pJ6/okwsLCsGzZMkyePPnJA35KVVlfQ7tHVVZdExIS8MUXX2DSpEnaY7Xl/vS44upqaPen8mCCUk4mJib466+/cOPGDdjZ2cHc3BzHjh3D888/D2NjYwBAvXr18Mcff2DXrl2wtLSESqVCSkoK2rdvry2j0WgAAJ9++ileeeUVdOjQAevWrYNMJsMff/yhl7pNnToVly5dwpYtW4qck8lkOj8LIYoce9zjZYorX57rVIWqrOuyZcuQmpqKOXPmVF7AT6Eq6yqEwJQpU+Do6IgTJ07g7NmzGDZsGIYMGaJNxqtTZde1JDExMRg0aBBee+01vP322090jcpQlfU1tHtUZdQ1NTUVgwcPRosWLTB37txSr1HadapaVdbV0O5P5cEEpQI6dOiA4OBgJCcnIzY2Fvv27UNCQgI8PT21ZQYMGICwsDDEx8fjwYMH+PXXX3H37l1tGRcXFwBAixYttM9RKpVo1KgRIiMjq7dCAKZNm4adO3fi6NGjcHNz0x53dnYGgCIZenx8vDaTd3Z2hlqtRlJSUqllipvFdP/+/SJ/EVS1qq7rkSNHcPr0aSiVSsjlcjRp0gQA0LFjR4wbN67K6lWc6qjr7t27sXXrVnTv3h3t27fHihUrYGZmhg0bNlRl1Yp4mrpWRExMDPr06YOuXbti1apVTxf0U6jq+hrSPaoy6pqWloZBgwbB0tISO3bsgImJic51asP9qUBpdTWk+1O5VeeAl5oEjw2SLc6NGzeEkZGR2L9/f4llDh8+LGQymXbAVUpKilAqlToD0NRqtXB0dBQ///xzpcReHhqNRrz33nvC1dVV3Lhxo9jzzs7OYvHixdpjOTk5xQ6m3LZtm7ZMTExMsYNkz5w5oy1z+vTpah2EVl11vXPnjggJCdE+9u/fLwCIP//8U0RFRVVxLR/VpTrqunPnTmFkZCTS0tJ0rt+0aVPx5ZdfVkXViqiMuhZW2iDZ6Oho4eXlJUaNGlXsrK3qUF31NYR7VGXVNSUlRXTp0kX06tVLZGRkFLlObbk/CVF2XQ3h/lRRTFAKSUtLE0FBQSIoKEgAEEuXLhVBQUHizp07QghpVPTRo0dFWFiY+Pvvv4WHh4d4+eWXda6xdu1aERAQIG7duiV+/fVXYWdnJ2bOnKlTZvr06aJ+/fpi//794vr162LChAnC0dFRJCYmVltd3333XaFSqcSxY8dEbGys9pGZmakts2jRIqFSqcT27dtFSEiIeP3114udjurm5iYOHTokLly4IJ577rlipxm3bt1aBAQEiICAANGqVatqncZXnXUtLDw8vNpHyVdXXe/fvy/s7e3Fyy+/LIKDg0VoaKj46KOPhImJiQgODq5RdY2NjRVBQUFi9erV2plJQUFBIiEhQQghzWBq0qSJeO6550R0dLTOa1Wn6qqvEPq/R1VGXVNTU0Xnzp1Fq1atxK1bt3SuU9vuT+Wta2H6uD9VFBOUQgr+onj8MW7cOCGEEN9//71wc3MTJiYmokGDBuKzzz4TOTk5OteYPXu2cHJyEiYmJsLLy0t88803QqPR6JRRq9Xiww8/FI6OjsLKykr069dPZ/pydSiungDEunXrtGU0Go2YO3eucHZ2FkqlUjz77LMiJCRE5zpZWVli6tSpws7OTpiZmYkhQ4aIyMhInTIJCQlizJgxwsrKSlhZWYkxY8aUaypnZanOuhamjxtAddb13LlzYsCAAcLOzk5YWVmJLl26iD179lRHNYUQlVfXuXPnlnqddevWlfha1am66iuE/u9RlVHXku7nAER4eLi2XG24P5W3roXVhARFJoQQ5ewNIiIiIqoWHCRLREREBocJChERERkcJihERERkcJigEBERkcFhgkJEREQGhwkKERERGRwmKERERGRwmKAQERGRwWGCQkRERAaHCQoREREZHCYoREREZHCYoBAREZHB+X++N57+7dEs3QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a very basic implementation of how to interact with the Banco de España API using Python. You can extend this class to include more functionality, such as handling different data formats, error handling, and more advanced data processing as needed. To get the series keys for the data you want to retrieve, you can use the [BIEST](https://app.bde.es/bie_www/bie_wwwias/xml/Arranque.html) tool provided by Banco de España.\n", "\n", "\n", "### ECB Data Portal & Other SDMX APIs\n", "\n", "The [ECB Data Portal](https://data.ecb.europa.eu/help/api/overview) provides access to a wide range of economic and financial data from the European Central Bank. Similar to Banco de España, the ECB does not provide an official Python package for their API. However, the ECB follows the [SDMX](https://sdmx.org/) standard for data exchange, which allows us to retrieve data in a structured format. We can use the `sdmx` library in Python to interact with the ECB API and retrieve data.\n", "\n", "First, we import the necessary libraries" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:58.144320Z", "iopub.status.busy": "2026-01-19T18:20:58.144021Z", "iopub.status.idle": "2026-01-19T18:20:58.323794Z", "shell.execute_reply": "2026-01-19T18:20:58.323121Z" } }, "outputs": [], "source": [ "import sdmx\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, we initialize a connection to the ECB API" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:58.326650Z", "iopub.status.busy": "2026-01-19T18:20:58.326120Z", "iopub.status.idle": "2026-01-19T18:20:58.329259Z", "shell.execute_reply": "2026-01-19T18:20:58.328774Z" } }, "outputs": [], "source": [ "ecb = sdmx.Client(\"ECB\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Suppose we want to retrieve the HICP inflation rate for Spain from January 2019 to June 2019. This series has the following key: `ICP.M.ES.N.000000.4.ANR`.\n", "\n", "To download it we need to specify the appropriate parameters and make a request to the ECB API" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:20:58.331474Z", "iopub.status.busy": "2026-01-19T18:20:58.331256Z", "iopub.status.idle": "2026-01-19T18:29:55.443452Z", "shell.execute_reply": "2026-01-19T18:29:55.442605Z" } }, "outputs": [], "source": [ "key = 'M.ES.N.000000.4.ANR' # Need key without the 'ICP.' prefix\n", "params = dict(startPeriod=\"2019-01\", endPeriod=\"2019-06\") # This is optional\n", "data = ecb.data(\"ICP\", key=key, params=params).data[0] # ICP prefix needs to be specified here\n", "df = sdmx.to_pandas(data).to_frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, the requested data is in the DataFrame `df` and we can manipulate or analyze it as needed. For example, we can display the retrieved data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:55.446681Z", "iopub.status.busy": "2026-01-19T18:29:55.446400Z", "iopub.status.idle": "2026-01-19T18:29:55.456507Z", "shell.execute_reply": "2026-01-19T18:29:55.455805Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
value
FREQREF_AREAADJUSTMENTICP_ITEMSTS_INSTITUTIONICP_SUFFIXTIME_PERIOD
MESN0000004ANR2019-021.1
2019-031.3
2019-041.6
2019-050.9
2019-060.6
\n", "
" ], "text/plain": [ " value\n", "FREQ REF_AREA ADJUSTMENT ICP_ITEM STS_INSTITUTION ICP_SUFFIX TIME_PERIOD \n", "M ES N 000000 4 ANR 2019-02 1.1\n", " 2019-03 1.3\n", " 2019-04 1.6\n", " 2019-05 0.9\n", " 2019-06 0.6" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that this is a multi-index DataFrame. We can reset the index to make it easier to work with" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:55.459282Z", "iopub.status.busy": "2026-01-19T18:29:55.458884Z", "iopub.status.idle": "2026-01-19T18:29:55.465387Z", "shell.execute_reply": "2026-01-19T18:29:55.464907Z" } }, "outputs": [], "source": [ "df = df.reset_index()\n", "df = df.set_index('TIME_PERIOD')\n", "df = df.loc[:, ['value']]\n", "df = df.rename(columns={'value': 'inflation_rate'})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can plot the data as usual" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:55.467711Z", "iopub.status.busy": "2026-01-19T18:29:55.467486Z", "iopub.status.idle": "2026-01-19T18:29:55.584053Z", "shell.execute_reply": "2026-01-19T18:29:55.583524Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVg1JREFUeJzt3XlYVPXiBvD3zAwM+yD7KuKKKyBorqmlJpploVhWothiWVbe6ua1m0vdrG4umZkt4lLmT9wtvZXXUlxSAcEVV0zZERSGdYCZ8/sDmeKCCsjMmRnez/PM88ThzJx3Tgqv53vm+xVEURRBREREZIJkUgcgIiIiuh0WFSIiIjJZLCpERERkslhUiIiIyGSxqBAREZHJYlEhIiIik8WiQkRERCZLIXWAxtDpdMjKyoKjoyMEQZA6DhERETWCKIooLi6Gj48PZLLmXRsxi6KSlZUFf39/qWMQERFRM6Snp8PPz69ZzzWLouLo6Aig5o06OTlJnIaIiIgaQ61Ww9/fX/97vDnMoqjUDvc4OTmxqBAREZmZe7ltgzfTEhERkcliUSEiIiKTxaJCREREJsss7lEhIiLj0mq1qKqqkjoGmTgrKyvI5XKDHoNFhYiI9ERRRE5ODgoLC6WOQmbC2dkZXl5eBpvnjEWFiIj0akuKh4cH7OzsOMkm3ZYoiigrK0NeXh4AwNvb2yDHYVEhIiIANcM9tSXF1dVV6jhkBmxtbQEAeXl58PDwMMgwEG+mJSIiANDfk2JnZydxEjIntX9eDHVPE4sKERHVweEeagpD/3lhUSEiIiKT1eSiEh8fj7Fjx8LHxweCIGD79u13fY5Go8GcOXMQEBAApVKJDh06IDY2tjl5iYiIqBVpclEpLS1FcHAwli9f3ujnREVFYe/evVi1ahXOnz+PDRs2ICgoqKmHJiIiqmfo0KF47bXXGr3/uXPn0K9fP9jY2CAkJAR//PEHBEFASkrKPeVoqdehupr8qZ+IiAhEREQ0ev+ffvoJ+/fvR1paGlxcXAAA7dq1a+phiYhMRkWVFlZyGeQy3sthCrZu3QorK6tG7z937lzY29vj/PnzcHBwQHFxcZOPOWXKFBQWFtYZVfD390d2djbc3Nya/HrG1lB+U2Xwe1R27tyJ8PBwfPzxx/D19UXnzp3xxhtvoLy8/LbP0Wg0UKvVdR5ERKbgUl4xBn/8Gx7+7CC0OlHqOATAxcUFjo6Ojd7/8uXLGDRoEAICAlr0Y9hyuRxeXl5QKKSb+cMSZxM2eFFJS0vDwYMHcfr0aWzbtg1Lly7F5s2bMWPGjNs+Z+HChVCpVPqHv7+/oWMSEd1VTlEFJq86huvFGqRmq3HoUr7UkQxKFEWUVVZL8hDFxpfAvw79tGvXDh988AFiYmLg6OiItm3b4quvvtLvKwgCkpKSsGDBAgiCgHnz5tV7Pa1Wi2nTpiEwMBC2trbo0qULPv30U/33582bh7Vr12LHjh0QBAGCIGDfvn0NDv3s378fffv2hVKphLe3N95++21UV1fXyT5z5ky89dZbcHFxgZeXV4OZbkcQBKxcuRKPPvoo7O3t8f777zc7PwBkZmZi4sSJaNOmDVxdXfHoo4/ijz/+aHQeQzB47dPpdBAEAevXr4dKpQIALF68GOPHj8fnn3+unyzmr2bPno1Zs2bpv1ar1SwrRCSpovIqTFl9DFlFFfptcYnpuL+zu4SpDKu8Sotu7/4sybHPLngIdtbN+xW1aNEivPfee/jHP/6BzZs348UXX8T999+PoKAgZGdnY/jw4Rg1ahTeeOMNODg4ID+/buHU6XTw8/NDXFwc3NzccPjwYTz//PPw9vZGVFQU3njjDaSmpkKtVmP16tUAaq7qZGVl1XmdzMxMjB49GlOmTMG6detw7tw5PPfcc7CxsalTRtauXYtZs2bh6NGj+P333zFlyhQMHDgQI0aMaNT7nTt3LhYuXIglS5ZALpc3O39ZWRmGDRuGwYMHIz4+HgqFAu+//z5GjRqFkydPwtrauln/P+6VwYuKt7c3fH199SUFALp27QpRFJGRkYFOnTrVe45SqYRSqTR0NCKiRtFUa/HCt4k4l1MMd0cl3nu0O6Z/dxy/nMlFYVklnO2k+QFODRs9ejReeuklAMDf//53LFmyBPv27UNQUJB+aMbBwQFeXl4AUK+oWFlZYf78+fqvAwMDcfjwYcTFxSEqKgoODg6wtbWFRqPRv0ZDVqxYAX9/fyxfvhyCICAoKAhZWVn4+9//jnfffRcyWc2gRq9evTB37lwAQKdOnbB8+XLs3bu30UVl0qRJiImJqbOtOfm/++47yGQyfPPNN/q5UVavXg1nZ2fs27cPI0eObFSelmbwojJw4EBs2rQJJSUlcHBwAABcuHABMpkMfn5+hj48EdE90elEzIo7gSNpN+CgVGD1lD7o4atCN28nnM1WY0dKFqIHtJM6pkHYWslxdsFDkh27uXr16qX/b0EQ4OXlpV+PprFWrlyJb775BlevXkV5eTkqKysREhLSpNdITU1F//7960yINnDgQJSUlCAjIwNt27atlxeo+Qd+U/KGh4e3SP6kpCRcunSp3v0+FRUVuHz5cqPztLQmF5WSkhJcunRJ//WVK1eQkpICFxcXtG3bFrNnz0ZmZibWrVsHoKbpvffee5g6dSrmz5+P/Px8vPnmm4iJiWlw2IeIyFSIooj3dp3FrpPZsJILWPl0GHr41lwdntjHH3N3nkFcYrrFFhVBEJo9/CKl//0EkCAI0Ol0jX5+XFwcXn/9dSxatAj9+/eHo6Mj/v3vf+Po0aNNyiGKYr1ZW2vvvfnr9nvNa29v3yL5dTodwsLCsH79+nrfc3eXboizyX8CExMTMWzYMP3XtfeSREdHY82aNcjOzsa1a9f033dwcMCePXvwyiuvIDw8HK6uroiKisL777/fAvGJiAznq/g0rD70BwDgkwnBGNTpz4+dPhrig3/tSsWZLDVOZxbpCwyZvwMHDmDAgAH64SMA9a4oWFtbQ6vV3vF1unXrhi1bttQpLIcPH4ajoyN8fX1bPvgtzc3fu3dvbNy4ER4eHnBycjJYvqZq8qd+hg4dClEU6z3WrFkDAFizZo3+7uFaQUFB2LNnD8rKypCeno5FixbxagoRmbRtyRlY+J9zAIB/jA7CoyF1f7E421ljZHdPAMCmxHSj5yPD6dixIxITE/Hzzz/jwoUL+Oc//4mEhIQ6+7Rr1w4nT57E+fPnkZ+f3+DHgl966SWkp6fjlVdewblz57Bjxw7MnTsXs2bN0t+fYkr5n3rqKbi5ueHRRx/FgQMHcOXKFezfvx+vvvoqMjIyDJb3brjWDxHR/zhw8Tre3HQSABAzMBDPDW7f4H5R4TWfRtyekoWKqjv/65rMx/Tp0/H4449j4sSJuO+++1BQUFDn6gQAPPfcc+jSpQvCw8Ph7u6OQ4cO1XsdX19f7N69G8eOHUNwcDCmT5+OadOm4Z133jHJ/HZ2doiPj0fbtm3x+OOPo2vXroiJiUF5ebmkV1gEsSkfVpeIWq2GSqVCUVGRSV2OIiLLczqzCBO//B2llVo83Msby54Ihew2M9BqdSIGf/Qrsooq8NmToRgb7GPktC2roqICV65cQWBgIGxsbKSOQ2biTn9uWuL3N6+oEBHdcq2gDFNWJ6C0Uov+7V2xKCr4tiUFAOQyAePDaj69GMfhHyKDYFEhIgJQUKJB9OpjyC/RIMjLEV9ODoNScfePyI4Pqxn+OXgpH5mFt18ahKip1q9fDwcHhwYf3bt3lzqe0Zjf586IiFpYWWU1YtYm4kp+KXydbbE2pi+cbBq3yF1bVzsM6OCKw5cLsCUpAzMfrD+JJVFzPPLII7jvvvsa/F5TFmE0dywqRNSqVWt1ePn7ZJxIL4TK1gprY/rA06lp92dEhfvj8OUCxCWm4+VhHe84XETUWI6Ojk1abNFSceiHiFotURTxj22n8Ou5PCgVMsROCUdHj6b/YhjVwwuONgpk3CzHkbQCAyQ1rqZMNkZk6D8vvKJCRK3Wkj0XEJeYAZkAfPZkKMICXJr1OjZWcjwS7IP1R68hLjEdAzq63f1JJsja2hoymQxZWVlwd3eHtbV1vZlViWqJoojKykpcv34dMpnMYIsWsqgQUau0/uhVLPu1ZjmQ98b1wMjut19crjGiwv2x/ug1/Od0DuaXV0Fla373EMhkMgQGBiI7O7veSsBEt2NnZ4e2bdsabBI7FhUianV+PpODf24/DQCY+UBHPHVfwD2/Zi8/Fbp4OuJ8bjF+OJGFp/vd+2tKwdraGm3btkV1dfVdp4gnksvlUCgUBr3yxqJCRK1K4h83MHNDMnQiMDHcH6+P6NwirysIAqL6+OO9H89iU2K62RYVoOa9WFlZtapPlpDp4s20RNRqXMorxrS1idBU6/BAkAf+9ViPFv2X4LgQH1jJBZzIKMK5HHWLvS5Ra8aiQkStQq66AtGxCSgqr0KwvzOWTwqFQt6yPwJdHZQY3rVmocK4BOkWcSOyJCwqRGTx1BVViI49hszCcgS62SM2Ohx21oYZ+a5dqHBbcgYqq/kxX6J7xaJCRBZNU63F8+sScS6nGG4OSqyL6QtXB6XBjje4kxs8nZS4WVaFvam5BjsOUWvBokJEFkunEzEr7gSOpN2AvbUca6b2gb+LnUGPqZDLENmbCxUStRQWFSKySKIo4v1dqdh1MhsKmYCVz4Shh6/KKMeuHf7Zf+E6cooqjHJMIkvFokJEFunrA2mIPXQFAPDJhGAM7uRutGO3c7NH30AX6ERgy3HeVEt0L1hUiMjibE/OxAe7zwEA/jE6CONCfY2eofaqSlxiOkRRNPrxiSwFiwoRWZSDF/Px5uYTAICYgYF4bnB7SXKM7ukFe2s5rhaU4diVG5JkILIELCpEZDFOZxbhhW8TUaUV8XAvb7wzpqtki+rZWSswNtgHABCXyOEfouZiUSEii5B+owxTViegtFKL/u1dsSgqGDKZtCv/Trg1/LP7VDaKK6okzUJkrlhUiMjs3SitxOTYY8gv0SDIyxFfTg6DUiGXOhZ6t3VGB3d7lFdpsetkttRxiMwSiwoRmbWyymrErEnAlfxS+DrbYm1MXzjZmMZieoIgYGKfP2+qJaKmY1EhIrNVrdXhle+TkZJeCJWtFdbG9IGnk43Usep4LNQPcpmA49cKcSmvWOo4RGaHRYWIzJIoipiz7TT2nsuDUiFD7JRwdPRwlDpWPe6OSjwQ5AGAN9USNQeLChGZpSX/vYiNiemQCcBnT4YiLMBF6ki3VTunytbjGajScqFCoqZgUSEis7P+6FUs23sRAPDeuB4Y2d1L4kR3NrSLO9wclMgvqcRv5/KkjkNkVlhUiMis/HwmB//cfhoAMPOBjnjqvgCJE92dlVyGyN41s+Ny+IeoaVhUiMhsJP5xAzM3JEMnAhPD/fH6iM5SR2q02jlVfjufh7xiLlRI1FgsKkRkFi7lFWPa2kRoqnV4IMgD/3qsh2SzzjZHRw8HhAW0gVYnYuvxTKnjEJkNFhUiMnm56gpExyagqLwKwf7OWD4pFAq5+f34igr3A8CFComawvz+phNRq6KuqEJ07DFkFpYj0M0esdHhsLNWSB2rWcb08oGtlRxp10tx/NpNqeMQmQUWFSIyWZpqLZ5fl4hzOcVwc1BiXUxfuDoopY7VbA5KBcb08gYAxCXwplqixmBRISKTpNOJmBV3AkfSbsDeWo41U/vA38VO6lj3rHZOlR9PZqFUUy1xGiLTx6JCRCZHFEW8vysVu05mQyETsPKZMPTwVUkdq0X0adcGgW72KK3UYvcpLlRIdDcsKkRkcr4+kIbYQ1cAAJ9MCMbgTu4SJ2o5giBgwl9uqiWiO2NRISKTsj05Ex/sPgcAmB0RhHGhvhInanmRvf0gE4CEP24i7XqJ1HGITBqLChGZjIMX8/Hm5hMAgKkD2+H5+9tLnMgwPJ1sMLRLzUKFm5J4Uy3RnbCoEJFJOJ1ZhBe+TUSVVsSYXt7455huZjWhW1PVzqmyJSkD1VyokOi2WFSISHLpN8owZXUCSiu16NfeBYujgiGTWW5JAYAHgjzhYm+NvGIN4i9elzoOkcliUSEiSd0orcTk2GPIL9EgyMsRX00Oh1IhlzqWwVkrZHjs1v03nFOF6PZYVIhIMmWV1YhZk4Ar+aXwdbbF2pi+cLKxkjqW0dTOqfLf1FwUlGgkTkNkmlhUiEgS1VodXvk+GSnphVDZWmFtTB94OtlIHcuoung5ItjfGdU6EduSuVAhUUNYVIjI6ERRxJxtp7H3XB6UChlip4Sjo4ej1LEkUXtT7cYELlRI1BAWFSIyuiX/vYiNiemQCcBnT4YiLMBF6kiSGRvsA6VChot5JTiRUSR1HCKTw6JCREa1/uhVLNt7EQDw3rgeGNndS+JE0nKyscLonrcWKuRMtUT1sKgQkdH8ciYH/9x+GgAw84GOeOq+AIkTmYbaKfV/SMlCeaVW4jREpoVFhYiMIunqDbyyIRk6EZgY7o/XR3SWOpLJ6BfoirYudijWVOOnM1yokOivWFSIyOAu5ZVg2tpEaKp1eCDIA/96rIdFzzrbVDKZgAlhf95US0R/YlEhIoPKVVcgOvYYCsuqEOzvjOWTQqGQ80fP/4oM84MgAEfSbuBqQanUcYhMBn9aEJHBqCuqEB17DJmF5Qh0s0dsdDjsrBVSxzJJPs62GNzJHQCwmQsVEumxqBCRQWiqtXhhXRLO5RTDzUGJdTF94eqglDqWSaudU2VzUga0Os6pQgSwqBCRAeh0Iv4WdwK/pxXA3lqONVP7wN/FTupYJm9EN08421khu6gCBy/lSx2HyCSwqBBRi/vX7lT8eDIbCpmAlc+EoYevSupIZkGpkGNcyK2FCjmnChEAFhUiamFfx6dh1cErAIBPJgTr77ugxqldqHDPmVzcLK2UOA2R9FhUiKjF7EjJxL92pwIAZkcEYVyor8SJzE83Hyf08HVCpVaH7SlcqJCoyUUlPj4eY8eOhY+PDwRBwPbt2xv93EOHDkGhUCAkJKSphyUiE3foUj7e2HQCADB1YDs8f397iROZr9qrKlyokKgZRaW0tBTBwcFYvnx5k55XVFSEyZMn48EHH2zqIYnIxJ3JKsIL3yahSitiTC9v/HNMN07odg8eCfaBtUKGcznFOJOlljoOkaSaPKFBREQEIiIimnygF154AZMmTYJcLr/rVRiNRgONRqP/Wq3mX1QiU5V+owxTViegRFONfu1dsDgqGDIZS8q9cLazxkPdvfDDiSzEJabzZmRq1Yxyj8rq1atx+fJlzJ07t1H7L1y4ECqVSv/w9/c3cEIiao4bpZWIjj2G68UaBHk54qvJ4VAq5FLHsgi1c6psT85ERRUXKqTWy+BF5eLFi3j77bexfv16KBSNu4Aze/ZsFBUV6R/p6fyYHpGpKa/UYtraBKTll8LX2RZrpvaFk42V1LEsxsAObvB1toW6ohq/nM2VOg6RZAxaVLRaLSZNmoT58+ejc+fGr5SqVCrh5ORU50FEpqNaq8PL3x9H8rVCqGytsDamD7xUNlLHsigymYDxtxYqjONChdSKGbSoFBcXIzExES+//DIUCgUUCgUWLFiAEydOQKFQ4NdffzXk4YnIAERRxDvbT2PvuTwoFTKsig5HRw9HqWNZpNqicuhyPtJvlEmchkgaBi0qTk5OOHXqFFJSUvSP6dOno0uXLkhJScF9991nyMMTkQEs/e9F/F9COmQCsOzJUIS3c5E6ksXyd7HDwI6uEEVgy3EuVEitU5M/9VNSUoJLly7pv75y5QpSUlLg4uKCtm3bYvbs2cjMzMS6desgk8nQo0ePOs/38PCAjY1Nve1EZPq+P3oNn+69CAB4b1wPPNTdS+JEli8q3B+HLhVgU2IGZj7QiZ+oolanyVdUEhMTERoaitDQUADArFmzEBoainfffRcAkJ2djWvXrrVsSiKS3J6zuXhn+ykAwMwHOuKp+wIkTtQ6PNTdC442CmQWluP3tAKp4xAZnSCawbSHarUaKpUKRUVFvLGWSAJJV29g0tdHoanWYWK4Pz6M7MkJ3Yzon9tP49sjV/FoiA8+fSJU6jhEjdYSv7+51g8R3dGlvBJMW5sITbUODwR54F+P9WBJMbLaKfX/czoHRWVVEqchMi4WFSK6rVx1BaJjj6GwrArB/s5YPikUCjl/bBhbD18nBHk5orJah50nuFAhtS78iUNEDVJXVCE69hgyC8sR6GaP2Ohw2Fk3+f57agGCIOivqsQl8tM/1LqwqBBRPZpqLV5Yl4RzOcVwc1BiXUxfuDoopY7Vqo0L9YWVXMCpzCKc5UKF1IqwqBBRHTqdiL/FncDvaQWwt5ZjzdQ+8HexkzpWq+dib40R3TwBAJuSOFMttR4sKkRUx792p+LHk9lQyASsfCaMK/eakAm3hn+2J2dCU82FCql1YFEhIr2v49Ow6uAVAMAnE4IxuJO7xInor+7v5A4vJxvcLKvCf8/mSR2HyChYVIgIALAjJRP/2p0KAJgdEYRxob4SJ6L/Jf/rQoWJHP6h1oFFhYhw6FI+3th0AgAwdWA7PH9/e4kT0e3UFpX4i9eRVVgucRoiw2NRIWrlzmQV4YVvk1ClFTGmlzf+OaYbJ3QzYe3c7HFfoAtEEdjKhQqpFWBRIWrF0m+UYcrqBJRoqtGvvQsWRwVz0Tsz8Nc5VXQ6k18FheiesKgQtVI3SisRHXsM14s1CPJyxFeTw6FUyKWORY0Q0dMLDkoFrt0ow7E/bkgdh8igWFSIWqHySi2mrU1AWn4pfJ1tsWZqXzjZWEkdixrJzlqBscE+AHhTLVk+FhWiVqZaq8PL3x9H8rVCqGytsDamD7xUNlLHoiaKCq+5qXb3qWyoK7hQIVkuFhWiVkQURbyz/TT2nsuDUiHDquhwdPRwlDoWNUOIvzM6eTigokqHH09kSx2HyGBYVIhakaX/vYj/S0iHTACWPRmK8HYuUkeiZqq7UCGHf8hysagQtRLfH72GT/deBAAseLQHHuruJXEiulfjQn2hkAlISS/EhdxiqeMQGQSLClErsOdsLt7ZfgoA8MoDHfF0vwCJE1FLcHdU4oEgDwDAJl5VIQvFokJk4ZKu3sQrG45DJ9bcgDlrRGepI1ELmtinZvhn6/FMVGl1EqchanksKkQW7FJeCaatTUBFlQ4PBHngg8d6ctZZCzOkszvcHZUoKK3E3lQuVEiWh0WFyELlqisQHXsMhWVVCPZ3xvJJoVDI+Vfe0ijkMkT2rvmoMod/yBLxpxaRBVJXVGHK6gRkFpYj0M0esdHhsLNWSB2LDGTCrTlVfjufh1x1hcRpiFoWiwqRhdFUazH92ySkZqvh5qDEupi+cHVQSh2LDKiDuwPCA9pAJ9bcq0JkSVhUiCyITifijU0ncfhyAeyt5VgztQ/8XeykjkVGUDunyqbEdIgiFyoky8GiQmQhRFHEB7tT8cOJLChkAlY+E4YeviqpY5GRjO7lDTtrOdLyS5F09abUcYhaDIsKkQUo0VTjtY0p+ObgFQDAJxOCMbiTu8SpyJgclAo83MsbALAxgTfVkuVgUSEyc2eyivDIZwexIyULcpmABY92x7hQX6ljkQRqh392ncpGiaZa4jRELYNFhchMiaKIb49cxWMrDiMtvxTeKhtsfL4fJvdvJ3U0kkhYQBu0d7NHWaUWu09yoUKyDCwqRGZIXVGFl79Pxj+3n0ZltQ4PBnlg98zBXGSwlRMEARO4UCFZGBYVIjNzMqMQDy87iF2nsqGQCXhnTFd8Ex2ONvbWUkcjExDZ2xdymYDEqzdx+XqJ1HGI7hmLCpGZEEURqw9dQeQXh3HtRhl8nW2xaXp/PDu4PafFJz0PJxsM7VxzI/WmxAyJ0xDdOxYVIjNQVFaF6d8lYf4PZ1GlFTGymyd2zxyM0LZtpI5GJijq1kKFW45noJoLFZKZ45zaRCYu+dpNvPx9MjILy2Etl+Efo4MQPaAdr6LQbT0Q5AE3B2tcL9Zg3/nrGN7NU+pIRM3GKypEJkoURXwdn4YJK39HZmE52rrYYcuLAzBlYCBLCt2RlVyGx259RJ031ZK5Y1EhMkE3Syvx7NpE/Gt3Kqp1Isb09MaPMwehpx9nmqXGqf30z6/n8nC9WCNxGqLmY1EhMjGJf9zAmGUHsPdcHqwVMrw/rgeWTwqFk42V1NHIjHT2dESIvzOqdSK2J3OhQjJfLCpEJkKnE7Fi3yVM/OoIsooqEOhmj20vDcDT/QI41EPNEvWXOVW4UCGZKxYVIhNQUKLB1DUJ+Pin89DqRDwa4oMfXhmE7j4c6qHmGxvsDRsrGS7mlSAlvVDqOETNwqJCJLEjaQUYvewA9l+4DqVCho8ie2LpxBA4KPmhPLo3jjZWGN2zZqFC3lRL5opFhUgiWp2IZXsvYtLXR5Cr1qCDuz12vjwIE/u05VAPtZja4Z8fTmSjrJILFZL5YVEhkkBecQUmxx7F4j0XoBOByN5++OGVQeji5Sh1NLIw9wW6IMDVDiWaavznVI7UcYiajEWFyMgOXcrH6E8P4tClAthayfHJhGAsigqGnTWHeqjlCYKACWF+ADj8Q+aJRYXISLQ6EYv3XMDTq44iv0SDLp6O+OGVgRh/65cIkaFEhvlBEICjV27gj/xSqeMQNQmLCpER5KorMOnrI1i29yJEEXiijz+2zxiIjh4c6iHD81bZ4v5ONQsVbk7iQoVkXlhUiAxs/4XrGP3pARy9cgP21nJ8+kQIPozsBVtrudTRqBWZeGuhws1JGdDqOKcKmQ8OihMZSLVWh0V7LuCLfZcBAF29nfD5pFC0d3eQOBm1Rg929UAbOyvkqCsQf/E6hnXxkDoSUaPwigqRAWQVluOJr47oS8rT/dpi20sDWFJIMkqFHONuLVS4iTfVkhlhUSFqYb+ey8XoZQeQePUmHJUKLJ8UivfH9YSNFYd6SFoTwmqGf/aczcWN0kqJ0xA1DosKUQup0urwwe5UxKxJRGFZFXr6qvDjzEF4uJeP1NGIAADdfJzQ01eFKi0XKiTzwaJC1ALSb5Rhwsrf8VV8GgBgyoB22PxifwS42kucjKiuqPA/51ThQoVkDlhUiO7Rz2dyMGbZAaSkF8LJRoEvnwnDvEe6Q6ngUA+ZnkdCfKFUyHAupxinM9VSxyG6KxYVombSVGsx/4czeOHbJKgrqhHi74xdMwfjoe5eUkcjui2VrRVG9aj5M7ox8ZrEaYjujkWFqBmuFZRh/Be/Y/WhPwAAzw0ORNwL/eHvYidtMKJGqF2ocEdKFiqqtBKnIbozFhWiJtp9Khtjlh3AqcwiONtZYVV0OOaM6QZrBf86kXno394Vvs62KK6oxs9nuFAhmTb+ZCVqpIoqLf65/TReWn8cxZpqhAe0we6Zg/FgV0+poxE1iUwmYEI4Fyok88CiQtQIV/JL8fiKw/j2yFUAwItDO2DD8/3g42wrcTKi5hl/a6HCQ5cKkH6jTOo4RLfV5KISHx+PsWPHwsfHB4IgYPv27Xfcf+vWrRgxYgTc3d3h5OSE/v374+eff25uXiKj25GSiYeXHcDZbDVc7K2xZmof/H1UEKzk7Plkvvza2GFgBzcAXKiQTFuTf9KWlpYiODgYy5cvb9T+8fHxGDFiBHbv3o2kpCQMGzYMY8eORXJycpPDEhlTRZUWs7eexKv/l4LSSi3uC3TBf14djKFcI4UsRBQXKiQz0ORFCSMiIhAREdHo/ZcuXVrn6w8++AA7duzADz/8gNDQ0Aafo9FooNFo9F+r1fysPxnXpbwSzFh/HOdziyEIwCvDOmLmg52g4FUUsiAju3nCyUaBzMJyHL6cj8Gd3KWORFSP0X/q6nQ6FBcXw8XF5bb7LFy4ECqVSv/w9/c3YkJq7bYkZWDsZwdxPrcYbg5KfBtzH2aN7MKSQhbHxurPhQrjEjn8Q6bJ6D95Fy1ahNLSUkRFRd12n9mzZ6OoqEj/SE/nXelkeGWV1Xhj0wn8bdMJlFdpMbCjK3a/OgiDOrlJHY3IYGrnVPn5TA4Ky7hQIZmeJg/93IsNGzZg3rx52LFjBzw8bj/Or1QqoVQqjZiMWrvzOcWY8f1xXMorgUwAXhveGTOGdYRcJkgdjciguvs4oau3E1Kz1dh5IguT+7eTOhJRHUa7orJx40ZMmzYNcXFxGD58uLEOS3RHoihiY8I1PPr5QVzKK4GHoxLfP9cPMx/sxJJCrYIgCHUWKiQyNUYpKhs2bMCUKVPw/fffY8yYMcY4JNFdlWiq8frGFPx9yylUVOlwf2d37H51MPq1d5U6GpFRjQvxhbVchtOZapzJKpI6DlEdTS4qJSUlSElJQUpKCgDgypUrSElJwbVrNYtbzZ49G5MnT9bvv2HDBkyePBmLFi1Cv379kJOTg5ycHBQV8S8DSedslhqPfHYQ21OyIJcJeGtUF6yZ0gduDhxypNanjb01RnSvmWF5E2+qJRPT5KKSmJiI0NBQ/UeLZ82ahdDQULz77rsAgOzsbH1pAYAvv/wS1dXVmDFjBry9vfWPV199tYXeAlHjiaKI745cxbgVh5CWXwpvlQ3+7/l+eGloR8g41EOtWO1NtduSM7lQIZkUQRRFk5/lR61WQ6VSoaioCE5OTlLHITNVXFGFt7eewq6T2QCAB4M88MmEYLSxt5Y4GZH0tDoRgz76FdlFFVg+KRQP9/KROhJZgJb4/c2JIahVOJVRhIc/O4hdJ7OhkAmYM7orvokOZ0khukUuEzA+rPamWg7/kOlgUSGLJooi1hy6gsgvDuNqQRl8nW0RN70/nru/PQSBQz1EfzUhrGb458DF68gqLJc4DVENFhWyWEXlVXjxu+OY98NZVGp1GNnNE7tnDkbvtm2kjkZkktq62qF/e1eIYs0MzUSmgEWFLFJKeiHGLDuAn87kwEouYO7YbvjymTCo7KykjkZk0qL63Br+SUqHjgsVkglgUSGLIooivjmQhvFfHEbGzXK0dbHDlhcHYOrAQA71EDXCqO7ecFQqkH6jHEeuFEgdh4hFhSxHYVklnluXiPd3paJaJ2J0Ty/8OHMQevk5Sx2NyGzYWssxNqTmEz+cU4VMAYsKWYSkqzcw+tMD+G9qHqwVMrw3rgc+n9QbTjYc6iFqqto5VXafyoa6okriNNTasaiQWdPpRHyx7zKivjyCrKIKBLrZY9tLA/BMvwAO9RA1U7CfCp09HaCp1uGHE1lSx6FWjkWFzFZBiQYxaxPw0U/noNWJeDTEBz+8MgjdfVRSRyMyazULFdZcVeGcKiQ1FhUyS0fTCjB62QHsO38dSoUMHz7eE0snhsBBqZA6GpFFeCzUFwqZgBPphTifUyx1HGrFWFTIrGh1Ij7bexFPfn0EuWoNOrjbY8fLA/FE37Yc6iFqQa4OSgzvWrNQYVxiusRpqDVjUSGzcb1Yg+jYY1i05wJ0IhDZ2w8/vDIIQV5c/4nIEGrnVNmWnInKap3Eaai14nVyMguHL+Xj1Y0puF6sga2VHO+N66Ffl4SIDOP+Tu7wcFQir1iDX8/lYlQPb6kjUSvEKypk0rQ6EYv3XMBTq47ierEGnT0dsPPlgSwpREagkMsQyYUKSWIsKmSyctUVeOqbI1i29yJEEXiijz92zBiETp6OUkcjajUm3Coq+87nIVddIXEaao1YVMgkxV+4jtGfHsCRtBuwt5bj0ydC8GFkL9hay6WORtSqtHd3QN92LtCJwGYuVEgSYFEhk1Kt1eHjn85hcuwxFJRWoqu3E354ZRAeDfGVOhpRqzUhvOaqyqbEdIgiFyok42JRIZORXVSOJ78+ghX7LgMAnu7XFtteGoD27g4SJyNq3Ub39Ia9tRx/FJQh4Y+bUsehVoZFhUzCb+fyMPrTA0j44yYclAosnxSK98f1hI0Vh3qIpGavVODhXjULFXJOFTI2FhWSVJVWh4W7UzF1TQJullWhp68Ku2YO0v9QJCLTUDunyq6T2SjRVEuchloTFhWSTMbNMkR9+Tu+jE8DAEwZ0A6bX+yPAFd7iZMR0f/q3bYN2rvbo7xKi10nuVAhGQ+LCknilzM5GLPsIJKvFcLJRoGVT4dh3iPdoVRwqIfIFAmCgIlcqJAkwKJCRlVZrcP8H87g+W+TUFRehWB/Z+yaORijenhJHY2I7uKx3r6QywQkXb2JS3lcqJCMg0WFjOZaQRnGrzyM1Yf+AAA8NzgQm17oD38XO2mDEVGjeDjaYFgXDwDAJl5VISNhUSGj+M+pbIxZdgAnM4rgbGeFbyaHY86YbrBW8I8gkTmJujWnypbjmajScqFCMjwuSkgGc7O0Ej+czMLmpAyczCgCAIQFtMFnT4bCx9lW4nRE1BzDgjzg5mCN/BIN9p2/jhHdPKWORBaORYVaVJVWh/3nr2NzUgb2nstFlbZmFkuFTMBz97fHrBGdYSXnVRQic2Ull+Hx3n74Kj4NcYnpLCpkcCwq1CLOZqmx5XgGdqRkIr+kUr+9u48TInv74dEQH7g6KCVMSEQtJSq8pqj8ei4PecUV8HC0kToSWTAWFWq2/BINdqTUDO2kZqv1290crDEuxBeRYX7o6u0kYUIiMoSOHo7o3dYZx68VYtvxTLwwpIPUkciCsahQk1RW6/DruVxsTsrEvvN5qNbVDO1Yy2UY3s0Dkb39cH9ndw7vEFm4qHB/HL9WiLjEdDx/f3sIgiB1JLJQLCp0V6Io4lRmEbYkZWDHiSwUllXpvxfs74zxvX0xNtgHznbWEqYkImMa08sb8384i8vXS3H8WiHCAtpIHYksFIsK3VaeugLbkjOx5XgGLuSW6Ld7OinxWKgfxof5oqOHo4QJiUgqjjZWGN3TG1uOZ2BTYjqLChkMiwrVUVGlxZ6zudhyPAPxF67j1sgOlAoZHuruhcgwPwzq6Aa5jJd5iVq7qHA/bDmegR9OZOHdsd1gZ81fKdTy+KeKIIoijl8rxJbjGfjxRBbUFX+ujBoe0AaRYX4Y08sbTjZWEqYkIlPTN9AF7Vzt8EdBGXafysH4MD+pI5EFYlFpxbIKy2uGdpIykJZfqt/u62yLx3v74vHefgh040rGRNQwQRAwIdwf//75POIS0llUyCBYVFqZsspq/HwmB1uSMnHocj7EW0M7tlZyRPT0wvjefujX3hUyDu0QUSNE9vbDol/O49gfN5B2vQTt3R2kjkQWhkWlFRBFEceu3MCW4xnYdTIbpZVa/ff6tXdBZG8/RPT0hoOSfxyIqGm8VDYY0tkdv92akfqtUUFSRyILw99MFiz9Rhm2HM/AluMZSL9Rrt/e1sUOkb398HhvX65cTET3LCrcH7+dv44txzMwa0RnKDiPErUgFhULU6Kpxu5T2diSlIGjV27otzsoFRjT0xuRYX7o064NJ2ciohbzYFdPuNhbI1etwYGL+RgW5CF1JLIgLCoWQKcT8XtaAbYkZeA/p3NQXlUztCMIwKCObojs7YeHunvB1loucVIiskTWChnGhfgi9tAVxCWms6hQi2JRMWNX8kuxJSkD25IzkVn459BOezd7RIb54bFQX/g420qYkIhai6g+fog9dAX/Tc1FQYmGi5BSi2FRMTNF5VXYdTIbW45nIOnqTf12RxsFHgn2QWSYH0L9nTm0Q0RGFeTlhGA/FU5kFGFbciaeHdxe6khkIVhUzIBWJ+LAxevYcjwTv5zJgaZaBwCQCcD9nd0xPswPw7t6wsaKQztEJJ0J4f44kVGEuMR0TBsUyH8wUYtgUTFhF3OLsfl4BrYnZyJXrdFv7+zpgPFhfhgX4gsPJxsJExIR/WlssA/e+/EsLuSW4GRGEYL9naWORBaARcXE3CytxA8ns7AlKQMnMor0253trPBosA/Gh/mjh68T/6VCRCZHZWuFiB5e2J6ShbjEdBYVahEsKiagSqvD/ltzEPw3NRdV2prpYhUyAUO7eGB8mB8eCPKAtYJzExCRaYsK98f2lCzsTMnCO2O68dOGdM9YVCR0NkuNLcczsCMlE/kllfrt3bydEBnmh0dDfODGO+eJyIz0a+8KfxdbpN8ox89ncjAu1FfqSGTmWFSMLL9Egx0pNUM7Z7PV+u1uDtYYF+KLyDA/dPV2kjAhEVHzyWQCJoT5Y/GeC9iYkM6iQveMRcUIKqt1+PVcLjYnZWLf+TxU62qGdqzlMjzYtWZo5/7O7rDitNNEZAEiw/yw5L8X8HtaAa4VlKGtK5fqoOZjUTEQURRxOlONzUnp2HkiCzfLqvTfC/ZTYXyYH8YG+8DZzlrClERELc/X2RaDOrrhwMV8bE5Kx6yRXaSORGaMRaWF5akrsC05E1uOZ+BCbol+u6eTEuNCfTG+tx86eTpKmJCIyPCiwv1vFZUMvDq8M+QyflKRmodFpQVUVGmx52wuthzPQPyF67g1sgOlQoaR3b0wPswPgzq68S8qEbUaI7p5QmVrhayiChy6lI/7O7tLHYnMFItKM4miiOPXCrHleAZ+PJEFdUW1/nthAW0Q2dsPY3p5Q2VrJWFKIiJp2FjJMS7EB2t/v4q4xHQWFWo2FpUmyiosrxnaScpAWn6pfruPygaP9/bD47190d7dQcKERESmIaqPP9b+fhW/nMnFzdJKtLHnPXnUdCwqjVBeqcVPZ7KxJSkThy7nQ7w1tGNrJUdEDy9Ehvmhf3tXyDi0Q0Sk191Hhe4+TjiTpcaOlExMGRgodSQyQywqtyGKIo5duYEtxzOw+1QOSjR/Du3cF+iCyDA/jO7pDQclTyER0e1Ehftj7s4ziEvMYFGhZmnyxB3x8fEYO3YsfHx8IAgCtm/fftfn7N+/H2FhYbCxsUH79u2xcuXK5mQ1ivQbZVj63wsY8u99mPjVEcQlZqBEUw1/F1u8NrwTDrw1DBtf6I+ocH+WFCKiu3g0xAfWchnOZqtxOrPo7k8g+h9N/k1bWlqK4OBgTJ06FZGRkXfd/8qVKxg9ejSee+45fPfddzh06BBeeukluLu7N+r5xlCiqcbuU9nYkpSBo1du6LfbW8sxppc3Inv7oU87Fw7tEBE1kbOdNUZ298SPJ7OxKTEdPXxVUkciM9PkohIREYGIiIhG779y5Uq0bdsWS5cuBQB07doViYmJ+OSTTyQvKocv52NzYgb+czoH5VVaAIAgAAM7uCEyzBcPdfeCnTWvmhAR3YuocH/8eDIb21OyMHt0V9hYcaFCajyD/xb+/fffMXLkyDrbHnroIaxatQpVVVWwsqr/8V2NRgONRqP/Wq1W19unJaz47TIOXsoHALR3s0dkmB8eC/WFj7OtQY5HRNQaDezoBh+VDbKKKrDnbC7GBvtIHYnMiMGLSk5ODjw9Pets8/T0RHV1NfLz8+Ht7V3vOQsXLsT8+fMNHQ1P92uLtq52iOzth95tnSEIHNohImppcpmA8eH+WLb3IuIS01lUqEmMsgre/xYA8dbne29XDGbPno2ioiL9Iz093SC5RvXwxgeP9URYQBuWFCIiA5oQ5gcAOHgpHxk3yyROQ+bE4EXFy8sLOTk5dbbl5eVBoVDA1dW1wecolUo4OTnVeRARkfnyd7HDgA6uEEVgS1Km1HHIjBi8qPTv3x979uyps+2XX35BeHh4g/enEBGRZYoK9wcAbEpKh652UTSiu2hyUSkpKUFKSgpSUlIA1Hz8OCUlBdeuXQNQM2wzefJk/f7Tp0/H1atXMWvWLKSmpiI2NharVq3CG2+80TLvgIiIzMKoHl5wtFEg42Y5jqQVSB2HzESTi0piYiJCQ0MRGhoKAJg1axZCQ0Px7rvvAgCys7P1pQUAAgMDsXv3buzbtw8hISF47733sGzZMsk/mkxERMZlYyXHI7dupI1LNMy9h2R5BLH2zlYTplaroVKpUFRUxPtViIjM2MmMQjyy/BCUChmOzRnOFeYtXEv8/jbKp36IiIgAoKevCkFejtBU67DzRJbUccgMsKgQEZHRCIKACbU31XL4hxqBRYWIiIxqXIgPrOQCTmYUITXbMDOPk+VgUSEiIqNydVBieNeaGcs3JWZInIZMHYsKEREZXe2cKtuSM1BZrZM4DZkyFhUiIjK6+zu7w8vJBjfLqvDf1Fyp45AJY1EhIiKjk8sERIb5AuCcKnRnLCpERCSJCWE1wz/xF64ju6hc4jRkqlhUiIhIEu3c7NE30AU6Edh6nAsVUsNYVIiISDK1N9XGJabDDCZKJwmwqBARkWRG9/SCvbUcVwvKcOzKDanjkAliUSEiIsnYWSswVr9QIedUofpYVIiISFJRfWqGf3afykZxRZXEacjUsKgQEZGkQv2d0dHDAeVVWvx4MlvqOGRiWFSIiEhSgiAgKtwPAOdUofpYVIiISHKPhfpBLhOQfK0QF3OLpY5DJoRFhYiIJOfuqMQDQR4AgE1JvKmW/sSiQkREJqF2TpWtxzNQpeVChVSDRYWIiEzCsC7ucHdUIr+kEr+ey5M6DpkIFhUiIjIJCrkMj/euWahwE2+qpVtYVIiIyGTULlT42/nryFNXSJyGTAGLChERmYyOHg4IC2gDrU7E1mQuVEgsKkREZGL+OqcKFyokFhUiIjIpY3r5wNZKjrTrpTh+7abUcUhiLCpERGRSHJQKjOnlDQDYmMCbals7FhUiIjI5E28tVPjjyWzkFfOm2taMRYWIiExOeEAbBHk5oqxSi6mrE7iqcivGokJERCZHEAR8+UwY3ByscSZLjRe/O47Kas5W2xqxqBARkUkKcLVH7JQ+sLOW4+ClfLy1+QR0On4KqLVhUSEiIpPVy88ZXzwdBoVMwPaULHz00zmpI5GRsagQEZFJG9LZHR9F9gIAfBmfhtiDVyRORMbEokJERCYvMswPb43qAgB4b9dZ/HgyS+JEZCwsKkREZBZeHNIB0f0DIIrArI0ncPhyvtSRyAhYVIiIyCwIgoB3x3bH6J5eqNTq8MK6JKRmq6WORQbGokJERGZDLhOwOCoEfQNdUKypxpTVx5BZWC51LDIgFhUiIjIrNlZyfP1MODp7OiBXrUF07DEUllVKHYsMhEWFiIjMjsrOCmtj+sJbZYNLeSWYtjYRFVVaqWORAbCoEBGRWfJW2WJtTF842SiQdPUmZm5IhpYTwlkcFhUiIjJbnT0d8U10H1grZPjlbC7e3XEaosiyYklYVIiIyKz1DXTBsidCIAjA+qPXsPzXS1JHohbEokJERGZvVA9vzH+kOwBg0Z4LiEtIlzgRtRQWFSIisgiT+7fDS0M7AABmbzuFX8/lSpyIWgKLChERWYw3H+qCyN5+0OpEzFifjORrN6WORPeIRYWIiCyGIAj4MLInhnR2R3mVFjFrEpB2vUTqWHQPWFSIiMiiWMllWPFUb/TyU+FmWRUmxx5DXnGF1LGomVhUiIjI4tgrFYid0gcBrnbIuFmOqasTUFxRJXUsagYWFSIiskhuDkqsi+kLV3trnMlS48XvjqOyWid1LGoiFhUiIrJYAa72WD21D+ys5Th4KR9vbT4BHWevNSssKkREZNF6+TljxVO9oZAJ2J6ShY9+Oid1JGoCFhUiIrJ4Q7t44MPIXgCAL+PTEHvwisSJqLFYVIiIqFUYH+aHNx/qAgB4b9dZ/HgyS+JE1BgsKkRE1Gq8NLQDJvcPgCgCszaewOHL+VJHortgUSEiolZDEATMHdsdET28UKnV4YV1SUjNVksdi+6ARYWIiFoVuUzAkokh6NvOBcWaakxZfQyZheVSx6LbYFEhIqJWx8ZKjq8nh6OzpwNy1RpExx5DYVml1LGoASwqRETUKqnsrLBmal94OdngUl4Jpq1NREWVVupY9D+aVVRWrFiBwMBA2NjYICwsDAcOHLjj/uvXr0dwcDDs7Ozg7e2NqVOnoqCgoFmBiYiIWoqPsy3WxvSFk40CSVdvYuaGZGg5IZxJaXJR2bhxI1577TXMmTMHycnJGDx4MCIiInDt2rUG9z948CAmT56MadOm4cyZM9i0aRMSEhLw7LPP3nN4IiKie9XFyxFfTw6HtUKGX87m4t0dpyGKLCumoslFZfHixZg2bRqeffZZdO3aFUuXLoW/vz+++OKLBvc/cuQI2rVrh5kzZyIwMBCDBg3CCy+8gMTExHsOT0RE1BLua++KTyeGQBCA9UevYfmvl6SORLc0qahUVlYiKSkJI0eOrLN95MiROHz4cIPPGTBgADIyMrB7926Ioojc3Fxs3rwZY8aMue1xNBoN1Gp1nQcREZEhRfT0xryx3QEAi/ZcQFxCusSJCGhiUcnPz4dWq4Wnp2ed7Z6ensjJyWnwOQMGDMD69esxceJEWFtbw8vLC87Ozvjss89ue5yFCxdCpVLpH/7+/k2JSURE1CzRA9rhxaEdAACzt53Cr+dyJU5EzbqZVhCEOl+LolhvW62zZ89i5syZePfdd5GUlISffvoJV65cwfTp02/7+rNnz0ZRUZH+kZ7OVktERMbx1kNd8HhvX2h1ImasT0ZKeqHUkVo1RVN2dnNzg1wur3f1JC8vr95VlloLFy7EwIED8eabbwIAevXqBXt7ewwePBjvv/8+vL296z1HqVRCqVQ2JRoREVGLEAQBH0X2Qn5JJeIvXEfMmgRsnt4f7d0dpI7WKjXpioq1tTXCwsKwZ8+eOtv37NmDAQMGNPicsrIyyGR1DyOXywGAd1UTEZFJspLL8MVTvdHTV4UbpZWIXn0MecUVUsdqlZo89DNr1ix88803iI2NRWpqKl5//XVcu3ZNP5Qze/ZsTJ48Wb//2LFjsXXrVnzxxRdIS0vDoUOHMHPmTPTt2xc+Pj4t906IiIhakL1SgdgpfRDgaof0G+WIWZOAEk211LFanSYN/QDAxIkTUVBQgAULFiA7Oxs9evTA7t27ERAQAADIzs6uM6fKlClTUFxcjOXLl+Nvf/sbnJ2d8cADD+Cjjz5quXdBRERkAO6OSqyL6YvHVxzG6Uw1XvwuCaui+8BawYndjUUQzWD8Ra1WQ6VSoaioCE5OTlLHISKiVuZkRiGe+OoIyiq1eCzUF4smBEMma/hDJPSnlvj9zUpIRER0F738nLHiqd5QyARsS87ERz+fkzpSq8GiQkRE1AhDu3jgw8heAIAv96dh9aErEidqHVhUiIiIGml8mB/efKgLAGDBj2fx48ksiRNZPhYVIiKiJnhpaAdM7h8AUQRmbTyBw5fzpY5k0VhUiIiImkAQBMwd2x0RPbxQqdXhhXVJSM3mmnSGwqJCRETURHKZgCUTQ9C3nQuKNdWYsvoYMgvLpY5lkVhUiIiImsHGSo6vJ4ejs6cDctUaRMceQ2FZpdSxLA6LChERUTOp7KywZmpfeDnZ4FJeCaatTURFlVbqWBaFRYWIiOge+DjbYm1MXzjZKJB09SZmbkiGVmfyc6maDRYVIiKie9TFyxFfTw6HtUKGX87m4t0dp7nwbgthUSEiImoB97V3xacTQyAIwPqj17D810tSR7IILCpEREQtJKKnN+aN7Q4AWLTnAuIS0iVOZP5YVIiIiFpQ9IB2eHFoBwDA7G2n8Ou5XIkTmTcWFSIiohb21kNd8HhvX2h1ImasT0ZKeqHUkcwWiwoREVELEwQBH0X2wv2d3VFepUXMmgSkXS+ROpZZYlEhIiIyACu5DF881Rs9fVW4UVqJ6NXHkFdcIXUss8OiQkREZCD2SgVip/RBgKsd0m+UI2ZNAko01VLHMissKkRERAbk7qjE2ql94WpvjdOZarz4XRIqq3VSxzIbLCpEREQG1s7NHrFT+sDWSo4DF/Px9y0noePstY3CokJERGQEwf7OWPF0b8hlArYlZ+Kjn89JHckssKgQEREZybAuHvjw8Z4AgC/3p2H1oSsSJzJ9LCpERERGNCHcH28+1AUAsODHs/jxZJbEiUwbiwoREZGRvTS0A57pFwBRBGZtPIHfLxdIHclksagQEREZmSAImPdId4zq7oVKrQ7Pf5uIczlqqWOZJBYVIiIiCchlApY+EYI+7dqguKIa0bHHkFlYLnUsk8OiQkREJBEbKzm+mdwHnTwckKvWIDr2GArLKqWOZVJYVIiIiCSksrPC2pi+8HKywaW8Ejy7NhEVVVqpY5kMFhUiIiKJ+TjbYm1MXzjaKJB49SZmbkiGlhPCAWBRISIiMgldvBzx9eRwWMtl+OVsLubuPA1RZFlhUSEiIjIR/dq7YukTIRAE4Lsj1/D5b5ekjiQ5FhUiIiITMrqnN+Y+3A0A8MkvFxCXkC5xImmxqBAREZmYKQMDMX1IBwDA7G2n8Ou5XIkTSYdFhYiIyAT9fVQXPB7qC61OxIz1yUhJL5Q6kiRYVIiIiEyQIAj4aHwvDO7khvIqLWLWJCDteonUsYyORYWIiMhEWcll+OLpMPT0VeFGaSWiVx9DXnGF1LGMikWFiIjIhDkoFYid0gdtXeyQfqMcMWsSUKKpljqW0bCoEBERmTh3RyXWxfSFq701Tmeq8eJ3Sais1kkdyyhYVIiIiMxAOzd7xE7pA1srOQ5czMfft5yErhXMXsuiQkREZCaC/Z2x4unekMsEbEvOxEc/n5M6ksGxqBAREZmRYV088OHjPQEAX+5Pw+pDVyROZFgsKkRERGZmQrg/3nyoCwBgwY9n8ePJLIkTGQ6LChERkRl6aWgHPNMvAKIIzNp4Ar9fLpA6kkGwqBAREZkhQRAw75HuGNXdC5VaHZ7/NhHnctRSx2pxLCpERERmSi4TsPSJEPRp1wbFFdWIjj2GzMJyqWO1KBYVIiIiM2ZjJcc3k/ugk4cDctUaRMceQ2FZpdSxWgyLChERkZlT2VlhbUxfeDnZ4FJeCZ5dm4iKKq3UsVoEiwoREZEF8HG2xdqYvnC0USDx6k3M3JAMrQVMCMeiQkREZCG6eDni68nhsJbL8MvZXMzdeRqiaN5lhUWFiIjIgvRr74qlT4RAEIDvjlzD579dkjrSPWFRISIisjCje3pj7sPdAACf/HIBcYnpEidqPhYVIiIiCzRlYCCmD+kAAJi99RR+O5cncaLmYVEhIiKyUH8f1QWPh/pCqxPx0vrjSEkvlDpSk7GoEBERWShBEPDR+F4Y3MkN5VVaxKxJwJX8UqljNQmLChERkQWzksvwxdNh6Omrwo3SSkyOPYrrxRqpYzUaiwoREZGFc1AqEDulD9q62CH9RjmmrjmGEk211LEahUWFiIioFXB3VGJtTF+42FvjdKYaL36XhMpqndSx7qpZRWXFihUIDAyEjY0NwsLCcODAgTvur9FoMGfOHAQEBECpVKJDhw6IjY1tVmAiIiJqnkA3e8RO6QNbKzkOXMzH21tOmvyEcE0uKhs3bsRrr72GOXPmIDk5GYMHD0ZERASuXbt22+dERUVh7969WLVqFc6fP48NGzYgKCjonoITERFR04X4O2PF070hlwnYmpyJj346L3WkOxLEJlap++67D71798YXX3yh39a1a1eMGzcOCxcurLf/Tz/9hCeeeAJpaWlwcXFpVki1Wg2VSoWioiI4OTk16zWIiIjoT5sS0/Hm5pMAgLlju2HqwMAWP0ZL/P5u0hWVyspKJCUlYeTIkXW2jxw5EocPH27wOTt37kR4eDg+/vhj+Pr6onPnznjjjTdQXl5+2+NoNBqo1eo6DyIiImo5E8L98cbIzgCABT+exY8nsyRO1DBFU3bOz8+HVquFp6dnne2enp7Iyclp8DlpaWk4ePAgbGxssG3bNuTn5+Oll17CjRs3bnufysKFCzF//vymRCMiIqImmjGsI3LVGmw9ngGVrZXUcRrUrJtpBUGo87UoivW21dLpdBAEAevXr0ffvn0xevRoLF68GGvWrLntVZXZs2ejqKhI/0hPN981CoiIiEyVIAiY90h3/PDKIAzu5C51nAY16YqKm5sb5HJ5vasneXl59a6y1PL29oavry9UKpV+W9euXSGKIjIyMtCpU6d6z1EqlVAqlU2JRkRERM0glwlo7+4gdYzbatIVFWtra4SFhWHPnj11tu/ZswcDBgxo8DkDBw5EVlYWSkpK9NsuXLgAmUwGPz+/ZkQmIiKi1qLJQz+zZs3CN998g9jYWKSmpuL111/HtWvXMH36dAA1wzaTJ0/W7z9p0iS4urpi6tSpOHv2LOLj4/Hmm28iJiYGtra2LfdOiIiIyOI0aegHACZOnIiCggIsWLAA2dnZ6NGjB3bv3o2AgAAAQHZ2dp05VRwcHLBnzx688sorCA8Ph6urK6KiovD++++33LsgIiIii9TkeVSkwHlUiIiIzI/R51EhIiIiMiYWFSIiIjJZLCpERERkslhUiIiIyGSxqBAREZHJYlEhIiIik8WiQkRERCaLRYWIiIhMFosKERERmawmT6EvhdrJc9VqtcRJiIiIqLFqf2/fyyT4ZlFUiouLAQD+/v4SJyEiIqKmKi4uhkqlatZzzWKtH51Oh6ysLDg6OkIQhBZ7XbVaDX9/f6Snp3MNIQPjuTYOnmfj4Hk2Dp5n4zDkeRZFEcXFxfDx8YFM1ry7TcziiopMJoOfn5/BXt/JyYl/CYyE59o4eJ6Ng+fZOHiejcNQ57m5V1Jq8WZaIiIiMlksKkRERGSyWnVRUSqVmDt3LpRKpdRRLB7PtXHwPBsHz7Nx8Dwbh6mfZ7O4mZaIiIhap1Z9RYWIiIhMG4sKERERmSwWFSIiIjJZLCpERERkskyuqCxcuBB9+vSBo6MjPDw8MG7cOJw/f77OPqIoYt68efDx8YGtrS2GDh2KM2fO1Nnnq6++wtChQ+Hk5ARBEFBYWFjvWMePH8eIESPg7OwMV1dXPP/88ygpKblrxlOnTmHIkCGwtbWFr68vFixYUGcdg+zsbEyaNAldunSBTCbDa6+91qxzYWiWcK63bt2KESNGwN3dHU5OTujfvz9+/vnn5p0QA7GE83zw4EEMHDgQrq6usLW1RVBQEJYsWdK8E2IglnCe/+rQoUNQKBQICQlp9DkwBks4z/v27YMgCPUe586da95JMQBLOM8AoNFoMGfOHAQEBECpVKJDhw6IjY1t0rkwuaKyf/9+zJgxA0eOHMGePXtQXV2NkSNHorS0VL/Pxx9/jMWLF2P58uVISEiAl5cXRowYoV8TCADKysowatQo/OMf/2jwOFlZWRg+fDg6duyIo0eP4qeffsKZM2cwZcqUO+ZTq9UYMWIEfHx8kJCQgM8++wyffPIJFi9erN9Ho9HA3d0dc+bMQXBw8L2dEAOyhHMdHx+PESNGYPfu3UhKSsKwYcMwduxYJCcn39vJaUGWcJ7t7e3x8ssvIz4+HqmpqXjnnXfwzjvv4Kuvvrq3k9OCLOE81yoqKsLkyZPx4IMPNu9kGJAlnefz588jOztb/+jUqVPzTooBWMp5joqKwt69e7Fq1SqcP38eGzZsQFBQUNNOhmji8vLyRADi/v37RVEURZ1OJ3p5eYkffvihfp+KigpRpVKJK1eurPf83377TQQg3rx5s872L7/8UvTw8BC1Wq1+W3JysghAvHjx4m3zrFixQlSpVGJFRYV+28KFC0UfHx9Rp9PV23/IkCHiq6++2ti3KylzP9e1unXrJs6fP/+u71cqlnKeH3vsMfHpp5++6/uVijmf54kTJ4rvvPOOOHfuXDE4OLgpb9vozPE83+6Ypswcz/N//vMfUaVSiQUFBc16z7VM7orK/yoqKgIAuLi4AACuXLmCnJwcjBw5Ur+PUqnEkCFDcPjw4Ua/rkajgbW1dZ1FkmxtbQHUXOa+nd9//x1DhgypMzHOQw89hKysLPzxxx+NPr4psoRzrdPpUFxcrH8PpsgSznNycjIOHz6MIUOGNDqfsZnreV69ejUuX76MuXPnNjqTlMz1PANAaGgovL298eCDD+K3335rdDYpmON53rlzJ8LDw/Hxxx/D19cXnTt3xhtvvIHy8vJG5wNMcOjnr0RRxKxZszBo0CD06NEDAJCTkwMA8PT0rLOvp6en/nuN8cADDyAnJwf//ve/UVlZiZs3b+ovjWVnZ9/2eTk5OQ0e+6/ZzJGlnOtFixahtLQUUVFRjc5nTOZ+nv38/KBUKhEeHo4ZM2bg2WefbXQ+YzLX83zx4kW8/fbbWL9+PRQK018z1lzPs7e3N7766its2bIFW7duRZcuXfDggw8iPj6+0fmMyVzPc1paGg4ePIjTp09j27ZtWLp0KTZv3owZM2Y0Oh9g4kXl5ZdfxsmTJ7Fhw4Z63xMEoc7XoijW23Yn3bt3x9q1a7Fo0SLY2dnBy8sL7du3h6enJ+RyuX4fBwcHODg4ICIi4o7Hbmi7ObGEc71hwwbMmzcPGzduhIeHR6PzGZO5n+cDBw4gMTERK1euxNKlSxt8H6bAHM+zVqvFpEmTMH/+fHTu3LnReaRkjucZALp06YLnnnsOvXv3Rv/+/bFixQqMGTMGn3zySaPzGZO5nmedTgdBELB+/Xr07dsXo0ePxuLFi7FmzZomXVUx2cr+yiuvYOfOnYiPj4efn59+u5eXF4Caxubt7a3fnpeXV6/d3c2kSZMwadIk5Obmwt7eHoIgYPHixQgMDAQA7N69G1VVVQD+vBTm5eVVr63m5eUBqN9szYUlnOuNGzdi2rRp2LRpE4YPH96kbMZiCee59nV69uyJ3NxczJs3D08++WSTMhqauZ7n4uJiJCYmIjk5GS+//DKAmh/0oihCoVDgl19+wQMPPNCknIZkruf5dvr164fvvvuuSfmMwZzPs7e3N3x9faFSqfT7dO3aFaIoIiMjo/E3L9/THS4GoNPpxBkzZog+Pj7ihQsXGvy+l5eX+NFHH+m3aTSaJt9A1JBVq1aJdnZ2d9x3xYoVorOzs6jRaPTbPvzwQ7O8mdZSzvX3338v2tjYiNu2bbvrcaVgKef5fy1YsEAMCAi4awZjMffzrNVqxVOnTtV5vPjii2KXLl3EU6dOiSUlJXfNYQzmfp5vJzIyUhw2bNhdMxiLJZznL7/8UrS1tRWLi4v1+2zfvl2UyWRiWVnZXXPUMrmi8uKLL4oqlUrct2+fmJ2drX/89U19+OGHokqlErdu3SqeOnVKfPLJJ0Vvb29RrVbr98nOzhaTk5PFr7/+WgQgxsfHi8nJyXXuPv7ss8/EpKQk8fz58+Ly5ctFW1tb8dNPP71jvsLCQtHT01N88sknxVOnTolbt24VnZycxE8++aTOfsnJyWJycrIYFhYmTpo0SUxOThbPnDnTQmepZVjCuf7+++9FhUIhfv7553XeQ2FhYQueqXtjCed5+fLl4s6dO8ULFy6IFy5cEGNjY0UnJydxzpw5LXim7o0lnOf/ZYqf+rGE87xkyRJx27Zt4oULF8TTp0+Lb7/9tghA3LJlSwueqXtjCee5uLhY9PPzE8ePHy+eOXNG3L9/v9ipUyfx2WefbdK5MLmiAqDBx+rVq/X76HQ6ce7cuaKXl5eoVCrF+++/Xzx16lSd15k7d+5dX+eZZ54RXVxcRGtra7FXr17iunXrGpXx5MmT4uDBg0WlUil6eXmJ8+bNq9fUGzq2Kf3rUxQt41wPGTKkwWNHR0ffy6lpUZZwnpctWyZ2795dtLOzE52cnMTQ0FBxxYoVdT7SKDVLOM//yxSLiiWc548++kjs0KGDaGNjI7Zp00YcNGiQuGvXrns6Ly3NEs6zKIpiamqqOHz4cNHW1lb08/MTZ82a1aSrKaIoisKtE0JERERkckz6Uz9ERETUurGoEBERkcliUSEiIiKTxaJCREREJotFhYiIiEwWiwoRERGZLBYVIiIiMlksKkRERGSyWFSIiIjIZLGoEFkIQRDu+JgyZYp+v+3bt9d73pEjR+q8nkajgaurKwRBwL59++56nP/7v/+7a8Z9+/bVeY67uzsiIiJw4sQJ/T5Dhw5t8PWnT5/eYAYHBwcEBwdjzZo1DR6rsLBQv02r1WLJkiXo1asXbGxs4OzsjIiICBw6dKjOc9esWaN/fblcjjZt2uC+++7DggULUFRUdNf3SUQth0WFyEJkZ2frH0uXLoWTk1OdbZ9++ultn+vv74/Vq1fX2bZt2zY4ODg0uP/q1avrvHZ2djbGjRvX6Kznz59HdnY2du3ahZs3b2LUqFF1CsBzzz1X7/U//vjjBjOcOHECEydOxNSpU/Hzzz/f9piiKOKJJ57AggULMHPmTKSmpmL//v3w9/fH0KFD65Q3APrzl5GRgcOHD+P555/HunXrEBISgqysrEa/VyK6NywqRBbCy8tL/1CpVBAEod6224mOjsb//d//oby8XL8tNjYW0dHRDe7v7Oxc57W9vLxgY2PT6KweHh7w8vJC3759sWjRIuTk5NS5omNnZ1fv9Z2cnBrM0KFDB/zjH/+Ai4sLfvnll9seMy4uDps3b8a6devw7LPPIjAwEMHBwfjqq6/wyCOP4Nlnn0Vpaal+/9rz5+3tja5du2LatGk4fPgwSkpK8NZbbzX6vRLRvWFRISKEhYUhMDAQW7ZsAQCkp6cjPj4ezzzzjMGPbWtrCwCoqqpq1vO1Wi3i4uJw48YNWFlZ3Xa/77//Hp07d8bYsWPrfe9vf/sbCgoKsGfPnjsey8PDA0899RR27twJrVbbrLxE1DQsKkQEAJg6dSpiY2MB1AyrjB49Gu7u7g3u++STT8LBwaHOIy0trcnHLCgowPz58+Ho6Ii+ffvqt69YsaLe669du7bBDEqlEhMnToSLiwueffbZ2x7rwoUL6Nq1a4Pfq91+4cKFu2YOCgpCcXExCgoKGvMWiegeKaQOQESm4emnn8bbb7+NtLQ0rFmzBsuWLbvtvkuWLMHw4cPrbPP392/0sfz8/AAApaWl6NSpEzZt2gQPDw/995966inMmTOnznP++v2/ZkhPT8esWbPw+uuvo2PHjo3O0BBBEO66jyiKjd6XiO4diwoRAQBcXV3x8MMPY9q0aaioqEBERASKi4sb3NfLy+ueSsGBAwfg5OQEd3f3eveeAIBKpbrr69dm6NixIzZt2oTQ0FCEh4ejW7duDe7fuXNnnD17tsHvpaamAgA6dep01+ypqalwcnKCq6vrXfclonvHoR8i0ouJicG+ffswefJkyOVygx0nMDAQHTp0aLCkNEfHjh0RGRmJ2bNn33afJ554AhcvXsQPP/xQ73uLFi2Cq6srRowYccfj5OXl4fvvv8e4ceMgk/HHJ5Ex8IoKEemNGjUK169fv2uBKCwsRE5OTp1tjo6OsLe3b5EcZWVl9V5fqVSiTZs2t33O3/72NwQHByMxMRHh4eH1vv/EE09g06ZNiI6Oxr///W88+OCDUKvV+Pzzz7Fz505s2rSpTn5RFJGTkwNRFFFYWIjff/8dH3zwAVQqFT788MMWeZ9EdHf8JwER6QmCADc3N1hbW99xv6lTp8Lb27vO47PPPmuxHF9//XW913/yySfv+JyePXti+PDhePfddxv8viAIiIuLw5w5c7BkyRIEBQVh8ODBuHr1Kn777bd688Co1Wp4e3vD19cX/fv3x5dffono6GgkJyfD29u7pd4qEd2FINbeGUZERERkYnhFhYiIiEwWiwoRtZiIiIh685/UPj744AOp4xGRGeLQDxG1mMzMzDrT8P+Vi4sLXFxcjJyIiMwdiwoRERGZLA79EBERkcliUSEiIiKTxaJCREREJotFhYiIiEwWiwoRERGZLBYVIiIiMlksKkRERGSy/h9hJ77w14m/iQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These are just basic examples of how to interact with the ECB API using Python. The `sdmx` library supports many more features. \n", "\n", "\n", ":::{.callout-tip}\n", "\n", "### Other SDMX Data Providers\n", "\n", "The SDMX standard is used by various international organizations for data exchange. Some other notable SDMX APIs include:\n", "\n", "- Eurostat\n", "- Bank for International Settlements (BIS)\n", "- International Monetary Fund (IMF)\n", "- OECD\n", "\n", "You can find a list of SDMX data providers implemented in the `sdmx` package [here](https://sdmx1.readthedocs.io/en/latest/). To use them in the code above you simply need to replace `'ECB'` with the appropriate provider name.\n", ":::\n", "\n", "\n", "### Fred API\n", "\n", "The [Fred API](https://fred.stlouisfed.org/docs/api/fred/) by the Federal Reserve Bank of St. Louis provides access to a vast amount of economic data, including interest rates, inflation rates, GDP figures, and more. To use the Fred API, we need to sign up for an API key on the Fred website. Once we have the API key, we can use the `pyfredapi` library in Python to interact with the Fred API and retrieve data.\n", "\n", "The Fred API works a little differently from the previous two APIs we have seen since it requires an API key for authentication. You can sign up for a free API key on the [Fred website](https://fred.stlouisfed.org/docs/api/api_key.html). Note that these keys are personal and should not be shared publicly. For this reason, the key is not included directly in the code examples below. Instead, you should follow the [instructions](https://pyfredapi.readthedocs.io/en/latest/) in the `pyfredapi` documentation to set up your API key securely. \n", "\n", "Once we have set the API key, we import the necessary libraries" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:55.586563Z", "iopub.status.busy": "2026-01-19T18:29:55.586312Z", "iopub.status.idle": "2026-01-19T18:29:55.760404Z", "shell.execute_reply": "2026-01-19T18:29:55.759738Z" } }, "outputs": [], "source": [ "import pyfredapi as pf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, we can download the series for GDP (series ID: `GDP`) as follows" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:55.762988Z", "iopub.status.busy": "2026-01-19T18:29:55.762758Z", "iopub.status.idle": "2026-01-19T18:29:56.010478Z", "shell.execute_reply": "2026-01-19T18:29:56.009857Z" } }, "outputs": [], "source": [ "df = pf.get_series('GDP') # Note that you can provide the API key manually by adding the parameter api_key='YOUR_API_KEY' if you have not set it up as an environment variable" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can then display the retrieved data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:56.013669Z", "iopub.status.busy": "2026-01-19T18:29:56.013380Z", "iopub.status.idle": "2026-01-19T18:29:56.022792Z", "shell.execute_reply": "2026-01-19T18:29:56.022013Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
realtime_startrealtime_enddatevalue
3142025-12-232025-12-232024-07-0129511.664
3152025-12-232025-12-232024-10-0129825.182
3162025-12-232025-12-232025-01-0130042.113
3172025-12-232025-12-232025-04-0130485.729
3182025-12-232025-12-232025-07-0131095.089
\n", "
" ], "text/plain": [ " realtime_start realtime_end date value\n", "314 2025-12-23 2025-12-23 2024-07-01 29511.664\n", "315 2025-12-23 2025-12-23 2024-10-01 29825.182\n", "316 2025-12-23 2025-12-23 2025-01-01 30042.113\n", "317 2025-12-23 2025-12-23 2025-04-01 30485.729\n", "318 2025-12-23 2025-12-23 2025-07-01 31095.089" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cleaning up the DataFrame a bit" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:56.026027Z", "iopub.status.busy": "2026-01-19T18:29:56.025653Z", "iopub.status.idle": "2026-01-19T18:29:56.033366Z", "shell.execute_reply": "2026-01-19T18:29:56.032716Z" } }, "outputs": [], "source": [ "df = df.rename(columns={'value': 'gdp'}) # Rename the 'value' column to 'gdp'\n", "df['date'] = pd.to_datetime(df['date']) # Convert the 'date' column to datetime format\n", "df = df.set_index('date') # Set the 'date' column as the index\n", "df = df.loc[:, ['gdp']] # Keep only the 'gdp' column" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now it looks better" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:56.036045Z", "iopub.status.busy": "2026-01-19T18:29:56.035797Z", "iopub.status.idle": "2026-01-19T18:29:56.041524Z", "shell.execute_reply": "2026-01-19T18:29:56.041040Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
gdp
date
2024-07-0129511.664
2024-10-0129825.182
2025-01-0130042.113
2025-04-0130485.729
2025-07-0131095.089
\n", "
" ], "text/plain": [ " gdp\n", "date \n", "2024-07-01 29511.664\n", "2024-10-01 29825.182\n", "2025-01-01 30042.113\n", "2025-04-01 30485.729\n", "2025-07-01 31095.089" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and to plot it, we can simply do" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2026-01-19T18:29:56.043829Z", "iopub.status.busy": "2026-01-19T18:29:56.043602Z", "iopub.status.idle": "2026-01-19T18:29:56.267839Z", "shell.execute_reply": "2026-01-19T18:29:56.267339Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGwCAYAAACgi8/jAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV15JREFUeJzt3Xl4VOXd//H3ZBuSkAwJIZuEiOwYQAFlEQUVA1RASutSaIr9WagLUKpYH61VrK1Q1/oUq7a1ai0SHxfc0BQsi0X2QISwLwECJARIMtlnkpn790dk6rCZQJKZJJ/Xdc0FOfOdM/c3wczH+9znHIsxxiAiIiLSAgX4egAiIiIijUVBR0RERFosBR0RERFpsRR0REREpMVS0BEREZEWS0FHREREWiwFHREREWmxgnw9AF9yu90cPXqUiIgILBaLr4cjIiIidWCMobS0lMTERAICzj9n06qDztGjR0lKSvL1MEREROQC5Obm0rFjx/PWtOqgExERAdR+oyIjI308GhEREamLkpISkpKSPJ/j59Oqg86pw1WRkZEKOiIiIs1MXZadaDGyiIiItFgKOiIiItJiKeiIiIhIi9Wq1+iIiIg0NbfbjdPp9PUw/FpwcDCBgYENsi8FHRERkSbidDrJycnB7Xb7eih+r127dsTHx1/0de4UdERERJqAMYa8vDwCAwNJSkr6zgvdtVbGGCoqKigoKAAgISHhovanoCMiItIEampqqKioIDExkbCwMF8Px6+FhoYCUFBQQGxs7EUdxlKcFBERaQIulwuAkJAQH4+keTgVBqurqy9qPwo6IiIiTUj3Vqybhvo+KeiIiIhIi6WgIyIiIi2Wgo6IiIg0uEsvvZQ//vGPvh6Ggo6IiIg0Lzvy7HWuVdARERGRZmXmwqw61yroiIiI+IAxhgpnjU8exph6jbW0tJTJkycTHh5OQkICL7zwAiNGjGDWrFlA7fVuxo0bR2hoKJ07d2bBggVn7MNisfDyyy8zZswYT927775b7+/bkeJK8uxVda7XBQNFRER8oLLaRe/H/uWT997+21GEhdQ9Atx///189dVXfPzxx8TFxfHYY4+xadMmrrjiCgDuvPNOcnNzWbZsGSEhIcycOdNzZeNv+81vfsO8efN48cUXeeutt/jRj35ESkoKvXr1qvNYNh4orHMtKOiIiIjIeZSWlvLmm2/y9ttvc+ONNwLw+uuvk5iYCMDu3bv5/PPPWbt2LYMGDQLgtddeO2t4ufXWW/nZz34GwJNPPsnSpUv505/+xJ///Oc6j2fjgaJ6jV9BR0RExAdCgwPZ/ttRPnvvutq/fz/V1dVcffXVnm02m40ePXoAsGPHDoKCghg4cKDn+Z49e9KuXbsz9jVkyJAzvs7KyqrX2DdoRkdERMT/WSyWeh0+8pVT63lOv1Lxqe3ner6u6vM6e2U1u46V1mv/WowsIiIi59SlSxeCg4NZv369Z1tJSQl79uwBoFevXtTU1LBx40bP87t27aK4uPiMfa1du/aMr3v27FnnsWw6WIQx0Ck6tM6v8f8oKSIiIj4TERHBlClTePDBB4mOjiY2NpbHH3+cgIAALBYLPXr0YPTo0UydOpW//OUvBAUFMWvWLM8dyL/t3XffZeDAgQwbNowFCxawfv16XnvttTqPZfW+EwBc2SmKr+r4Gs3oiIiIyHk9//zzDBkyhLFjxzJy5EiuueYaevXqRZs2bYDaxclJSUkMHz6ciRMnMm3aNGJjY8/YzxNPPEF6ejp9+/blzTffZMGCBfTu3btOYzDGkLEtH4Dh3TvUeez1Cjovv/wyffv2JTIyksjISIYMGcLnn3/uNYg5c+aQmJhIaGgoI0aMYNu2bV77cDgczJgxg5iYGMLDwxk/fjyHDx/2qikqKiItLQ2bzYbNZiMtLe2MKbBDhw4xbtw4wsPDiYmJYebMmTidzvq0IyIiInUQERHBggULKC8vJy8vj2nTprFr1y66du0KQHx8PJ9++ilVVVUcPHiQtLQ0Dhw44LnOzimJiYksWbKEqqoqDhw4wB133FHnMWzPKyG3sBJrUADXdI2p8+vqFXQ6duzIvHnz2LhxIxs3buSGG27glltu8YSZp59+mueff5758+ezYcMG4uPjuemmmygt/e/CoVmzZrFo0SLS09NZtWoVZWVljB07FpfL5amZNGkSWVlZZGRkkJGRQVZWFmlpaZ7nXS4XN998M+Xl5axatYr09HTef/99Hnjggfq0IyIiInWwefNmFi5cyL59+9i0aROTJ08G4JZbbmmyMWRk/3c2J9xaj5U35iJFRUWZv/3tb8btdpv4+Hgzb948z3NVVVXGZrOZV155xRhjTHFxsQkODjbp6ememiNHjpiAgACTkZFhjDFm+/btBjBr16711KxZs8YAZufOncYYYz777DMTEBBgjhw54qlZuHChsVqtxm6313nsdrvdAPV6jYiIyIWorKw027dvN5WVlb4eSr1t2rTJ9O/f34SHh5uoqCgzcuRIs2XLlnrtAzCLFi2qc/23v19ut9uMfG6FSX7oU/PBptx6fX5f8Bodl8tFeno65eXlDBkyhJycHPLz80lNTfXUWK1Whg8fzurVqwHIzMykurraqyYxMZGUlBRPzZo1a7DZbJ6LDgEMHjwYm83mVZOSkuK5WBHAqFGjcDgcZGZmnnPMDoeDkpISr4eIiIic35VXXklmZiZlZWUUFhaydOlS+vTpU699GGOYMGHCBb3/x18fZU9BGSGBAdzQM65er6130Nm6dStt27bFarVy9913s2jRInr37k1+fu2UUlyc9wDi4uI8z+Xn5xMSEkJUVNR5a862gCk2Ntar5vT3iYqKIiQkxFNzNnPnzvWs+7HZbCQlJdWzexERkYtj6nmfqdbq1PepsNzJnI9rl8jcd31XbKHB9dpPvYNOjx49yMrKYu3atdxzzz1MmTKF7du3e54/2wWFvutiQKfXnK3+QmpO9/DDD2O32z2P3Nzc845LRESkoQQG1l6NWCfO1E1FRQUAL63Ioaiiml4Jkdx7fZd676fe19EJCQnxrLIeOHAgGzZs4MUXX+Shhx4CamdbEhISPPUFBQWe2Zf4+HicTidFRUVeszoFBQUMHTrUU3Ps2LEz3vf48eNe+1m3bp3X80VFRVRXV58x0/NtVqsVq9Va35ZFREQuWlBQEGFhYRw/fpzg4GACAnSFl7MxxlBRUUFBQQFBoW35v01bAXjylssJDqz/9+yiLxhojMHhcNC5c2fi4+NZunQpV155JVCbWleuXMkf/vAHAAYMGEBwcDBLly7ltttuAyAvL4/s7GyefvppoPa+F3a7nfXr13vuq7Fu3TrsdrsnDA0ZMoTf//735OXleULVkiVLsFqtDBgw4GJbEhERaXAWi4WEhARycnI4ePCgr4fj99q1a8ebWcVUuwwDk6MYeGn0Be2nXkHnkUceYcyYMSQlJVFaWkp6ejorVqwgIyMDi8XCrFmzeOqpp+jWrRvdunXjqaeeIiwsjEmTJgG1NwG76667eOCBB2jfvj3R0dHMnj2bPn36MHLkSKD2UtKnrrD46quvAjBt2jTGjh3ruYFYamoqvXv3Ji0tjWeeeYbCwkJmz57N1KlTiYyMvKBvhIiISGMLCQmhW7duOnz1HYKDg6msMSxYtwWAaddddsH7qlfQOXbsGGlpaeTl5WGz2ejbty8ZGRncdNNNAPzqV7+isrKSe++9l6KiIgYNGsSSJUuIiIjw7OOFF14gKCiI2267jcrKSm688UbeeOMNz7FLgAULFjBz5kzP2Vnjx49n/vz5nucDAwNZvHgx9957L9dccw2hoaFMmjSJZ5999oK/ESIiIk0hICDAc0VhObdPMg9RWlVD55hwRvaq35lW32YxrXj5d0lJCTabDbvdrpkgERERP3LL/FV8fdjOI9/rybTrvBch1+fzWyuhRERExK9sP1rC14ftBAda+EH/jhe1LwUdERER8SvvbDgEQGrveNq3vbizpRV0RERExG+43IbFW/MAuHXgxc3mgIKOiIiI+JENBwo5UebEFhpcr7uUn4uCjoiIiPiNU3cpv6l33AVdIPB0CjoiIiLiF9xuw+fZtYetxqTEN8g+FXRERETEL2w4UMixEgdtrUEM63bxh61AQUdERET8xPzlewEY1y8Ba1Dgd1TXjYKOiIiI+NyGA4X8Z88JggIs3Duia4PtV0FHREREfO5//70HqD2lPCk6rMH2q6AjIiIiPrW3oIz/7DlBgIUGnc0BBR0RERHxsQXrDgJwQ8+4Bp3NAQUdERER8aFKp4v3Mw8DMHlwpwbfv4KOiIiI+EzGtjxKqmpIig5leLcODb5/BR0RERHxmZW7jgMwvl8iAQGWBt+/go6IiIj4hDGGr/adBGiQ+1qdjYKOiIiI+MSegjKOlzpoExxA/05RjfIeCjoiIiLiE1/tPQHAVZdG0ya4Ya6EfDoFHREREfGJr/bWHrYa2qVxDluBgo6IiIj4QLmjhrX7a4POsEZanwMKOiIiIuID72zIpcxRw6Xtw7g8MbLR3kdBR0RERJpUjcvNa6tyAPjZtZc1ymnlpyjoiIiISJP6LDufI8WVtA8P4YcDOjbqeynoiIiISJP6YNM3t3wY1KnRzrY6RUFHREREmoy9stpzWvn4KxIb/f0UdERERKTJLNt5jGqXoWtsW7rGRjT6+ynoiIiISJP5bGs+AN9LiW+S91PQERERkSZR7qjhy921N/EcnZLQJO+poCMiIiJNYvmuAhw1bpLbh9ErofEPW4GCjoiIiDSRz7NrD1uNSUnAYmm8a+d8m4KOiIiINLqqahfLdxYAMKaJ1ueAgo6IiIg0gZW7j1PhdHFJu1D6drQ12fsq6IiIiEij+9c3h61Gp8Q32WErUNARERGRRlbjcrNsV+1hq9TecU363go6IiIi0qg2HSqmuKIaW2gwA5KjmvS9FXRERESkUX2x4xgA1/foQFBg00YPBR0RERFpVKeCzsgmPmwFCjoiIiLSiA6cKGf/8XKCAixc171Dk7+/go6IiIg0mnU5JwHo3ymKyDbBTf7+CjoiIiLSaDYcKALgqs5Nuwj5FAUdERERaTQbDxQCMPDSaJ+8v4KOiIiINIqC0ioOnKzAYqk9dOULCjoiIiLSKDK/OWzVIy4CW2jTr88BBR0RERFpJJ71OT46bAX1DDpz587lqquuIiIigtjYWCZMmMCuXbu8au68804sFovXY/DgwV41DoeDGTNmEBMTQ3h4OOPHj+fw4cNeNUVFRaSlpWGz2bDZbKSlpVFcXOxVc+jQIcaNG0d4eDgxMTHMnDkTp9NZn5ZERESkkazedwKAgZf65rAV1DPorFy5kvvuu4+1a9eydOlSampqSE1Npby83Ktu9OjR5OXleR6fffaZ1/OzZs1i0aJFpKens2rVKsrKyhg7diwul8tTM2nSJLKyssjIyCAjI4OsrCzS0tI8z7tcLm6++WbKy8tZtWoV6enpvP/++zzwwAMX8n0QERGRBpRzopyd+aUEBVgY7oPr53iYi1BQUGAAs3LlSs+2KVOmmFtuueWcrykuLjbBwcEmPT3ds+3IkSMmICDAZGRkGGOM2b59uwHM2rVrPTVr1qwxgNm5c6cxxpjPPvvMBAQEmCNHjnhqFi5caKxWq7Hb7Wd976qqKmO32z2P3NxcA5yzXkRERC7MS8v3mOSHPjU//tva7y6uJ7vdXufP74tao2O32wGIjvY+9rZixQpiY2Pp3r07U6dOpaCgwPNcZmYm1dXVpKamerYlJiaSkpLC6tWrAVizZg02m41BgwZ5agYPHozNZvOqSUlJITEx0VMzatQoHA4HmZmZZx3v3LlzPYfCbDYbSUlJF9O+iIiInMPnW/MBGJOS4NNxXHDQMcZw//33M2zYMFJSUjzbx4wZw4IFC1i2bBnPPfccGzZs4IYbbsDhcACQn59PSEgIUVHex+vi4uLIz8/31MTGxp7xnrGxsV41cXHe98yIiooiJCTEU3O6hx9+GLvd7nnk5uZeaPsiIiJyDrmFFWw9YifAAqmXN/39rb4t6EJfOH36dLZs2cKqVau8tt9+++2ev6ekpDBw4ECSk5NZvHgxEydOPOf+jDFYLBbP19/++8XUfJvVasVqtZ67KREREblonkXIydHEtPXt5+4FzejMmDGDjz/+mOXLl9OxY8fz1iYkJJCcnMyePXsAiI+Px+l0UlRU5FVXUFDgmaGJj4/n2LFjZ+zr+PHjXjWnz9wUFRVRXV19xkyPiIiINJ1d+WUA9Olo8/FI6hl0jDFMnz6dDz74gGXLltG5c+fvfM3JkyfJzc0lIaH2GN2AAQMIDg5m6dKlnpq8vDyys7MZOnQoAEOGDMFut7N+/XpPzbp167Db7V412dnZ5OXleWqWLFmC1WplwIAB9WlLREREGtDuY6VA7YUCfa1eh67uu+8+3n77bT766CMiIiI8Myo2m43Q0FDKysqYM2cOP/jBD0hISODAgQM88sgjxMTE8P3vf99Te9ddd/HAAw/Qvn17oqOjmT17Nn369GHkyJEA9OrVi9GjRzN16lReffVVAKZNm8bYsWPp0aMHAKmpqfTu3Zu0tDSeeeYZCgsLmT17NlOnTiUyMrLBvkEiIiJSP7u+CTrd430fdOo1o/Pyyy9jt9sZMWIECQkJnsc777wDQGBgIFu3buWWW26he/fuTJkyhe7du7NmzRoiIv7b7AsvvMCECRO47bbbuOaaawgLC+OTTz4hMDDQU7NgwQL69OlDamoqqamp9O3bl7feesvzfGBgIIsXL6ZNmzZcc8013HbbbUyYMIFnn332Yr8nIiIicoEKy50cL609AalbbFsfjwYsxhjj60H4SklJCTabDbvdrlkgERGRBrBm30l+9Ne1JEWH8p9f3dAo71Gfz2/d60pEREQazH/X5/jHBIKCjoiIiDSYU+tzesT7/rAVKOiIiIhIA9qd/81CZD844woUdERERKSBVLvc7MgrAaBnvA5diYiISAuy5bCdcqeLqLBgvzjjChR0REREpIGs+ebWD0O6tCcg4Oy3Y2pqCjoiIiLSIFbvOwnAkMva+3gk/6WgIyIiIhetqtrFxoO197Ec0iXGx6P5LwUdERERuWibDxXjrHETG2GlS4dwXw/HQ0FHRERELtqGA4VA7foci8U/1ueAgo6IiIg0gOwjdgD6dmzn24GcRkFHRERELtq2o7XXz7k80T+un3OKgo6IiIhclOIKJ0eKKwHoraAjIiIiLcmp2ZxO0WFEtgn28Wi8KeiIiIjIRdl2tHZ9Tsol/jWbAwo6IiIicpH+uz7H5uORnElBR0RERC7KqTOu/G19DijoiIiIyEUoc9SQc6Ic8L8zrkBBR0RERC5C5sEi3KZ2IXJsRBtfD+cMCjoiIiJywdbn1N7I8+rO0T4eydkp6IiIiMgFW59Te+uHqy9V0BEREZEWpKraxde5tQuRNaMjIiIiLcrXucU4XbV3LE9uH+br4ZyVgo6IiIhckHWnDlt1jvarO5Z/m4KOiIiInNfxUgebDxV5bTPG8OmWowAM6xrji2HViYKOiIiInFOl08Vtr67h+39eTfr6Q57tW4/Y2X2sDGtQAN/rm+DDEZ6fgo6IiIic0zP/2uW5IOBjH20jK7cYgPcyDwMw6vJ4v7uR57cp6IiIiMhZfZ1bzOurc4Daqx47XW6eWrwDR42Lj7JqD1v9cEBHXw7xOynoiIiIyFm9tHwvxsD3r7yEuRP7AHCosIIDJyqwV1YTYQ3iGj9enwMQ5OsBiIiIiP/JOVHO0h3HALjv+i60CQ4EoLDcyclyBwCxkVYCA/zzbKtTFHRERETkDH9flYMxcH2PDnSNjaDS6QLA6XKTW1gBQPtwqy+HWCc6dCUiIiJejpc6eDczF4CfXXsZAKEhgbQJro0NewvKAIgOD/HNAOtBQUdERES8/OXLfVRVu+mX1I6hXdp7tp+awfEEnbYKOiIiItKMHC918NbagwDMGtnN64rHUeG1p5Hv+SbotNeMjoiIiDQXxhh+t3i7ZzZnRPcOXs9HfzOjc7io8puvFXRERESkmXh342E+yjpKYICFx8b2OuP+VdFh3hcGVNARERGRZuGDTYd59MNsAB5I7c6A5OgzaqJOCzbN4awrnV4uIiLSyr25+gCPf7wNgJv7JnD3dV3OWnf6mpzmMKOjoCMiItKK7Ttexu8/2wHA3cO78KtRPQg4x0UAz5jRaQZnXSnoiIiItFJut+Gh97bgrHFzXfcOPDS6xxnrcr7t9BmdqDD/DzpaoyMiItJKvb/pMBsPFhEeEsjciX3OG3LAO9hEtAkiJMj/Y4T/j1BEREQaXLmjhmf+tQuAX4zsxiXtQr/zNd8+VNUcrqEDCjoiIiKt0qsr91FQ6iC5fRhThl5ap9d8e0anOSxEhnoGnblz53LVVVcRERFBbGwsEyZMYNeuXV41xhjmzJlDYmIioaGhjBgxgm3btnnVOBwOZsyYQUxMDOHh4YwfP57Dhw971RQVFZGWlobNZsNms5GWlkZxcbFXzaFDhxg3bhzh4eHExMQwc+ZMnE5nfVoSERFpdYornLy2KgeA/xndE2tQYJ1e1y4shFNHt6KbwanlUM+gs3LlSu677z7Wrl3L0qVLqampITU1lfLyck/N008/zfPPP8/8+fPZsGED8fHx3HTTTZSWlnpqZs2axaJFi0hPT2fVqlWUlZUxduxYXC6Xp2bSpElkZWWRkZFBRkYGWVlZpKWleZ53uVzcfPPNlJeXs2rVKtLT03n//fd54IEHLub7ISIi0uL9fVUO5U4XvRIiGZ0SX+fXBQZYaBdae9HA5nLoCnMRCgoKDGBWrlxpjDHG7Xab+Ph4M2/ePE9NVVWVsdls5pVXXjHGGFNcXGyCg4NNenq6p+bIkSMmICDAZGRkGGOM2b59uwHM2rVrPTVr1qwxgNm5c6cxxpjPPvvMBAQEmCNHjnhqFi5caKxWq7Hb7XUav91uN0Cd60VERJq74gqnSXkswyQ/9Kn5bMvRer/+hmeXm+SHPjXzPt/RCKOrm/p8fl/UGh273Q5AdHTt1RNzcnLIz88nNTXVU2O1Whk+fDirV68GIDMzk+rqaq+axMREUlJSPDVr1qzBZrMxaNAgT83gwYOx2WxeNSkpKSQmJnpqRo0ahcPhIDMz86zjdTgclJSUeD1ERERak3c35lLqqKF7XFtGXV732ZxTTq3NaS4zOhccdIwx3H///QwbNoyUlBQA8vPzAYiLi/OqjYuL8zyXn59PSEgIUVFR562JjY094z1jY2O9ak5/n6ioKEJCQjw1p5s7d65nzY/NZiMpKam+bYuIiDRbbrfx3Jn8p9d0PueFAc+nV0Kk15/+7oKDzvTp09myZQsLFy4847nTz8M3xnznufmn15yt/kJqvu3hhx/Gbrd7Hrm5uecdk4iISEvy5Z7jHDxZQUSbIG65IvG7X3AWvxnbm+WzR3BN15gGHl3juKCgM2PGDD7++GOWL19Ox44dPdvj42unwE6fUSkoKPDMvsTHx+N0OikqKjpvzbFjx8543+PHj3vVnP4+RUVFVFdXnzHTc4rVaiUyMtLrISIi0lq8ufoAAD8c0JGwkAu7OUJwYACdY8IbcFSNq15BxxjD9OnT+eCDD1i2bBmdO3f2er5z587Ex8ezdOlSzzan08nKlSsZOnQoAAMGDCA4ONirJi8vj+zsbE/NkCFDsNvtrF+/3lOzbt067Ha7V012djZ5eXmemiVLlmC1WhkwYEB92hIREWnx1u0/yfJdxwmwQNrgZF8Pp8nUK87dd999vP3223z00UdERER4ZlRsNhuhoaFYLBZmzZrFU089Rbdu3ejWrRtPPfUUYWFhTJo0yVN711138cADD9C+fXuio6OZPXs2ffr0YeTIkQD06tWL0aNHM3XqVF599VUApk2bxtixY+nRowcAqamp9O7dm7S0NJ555hkKCwuZPXs2U6dO1UyNiIjIt7jdht8trr1x5x1Xd+KyDm19PKImVJ/TuYCzPl5//XVPjdvtNo8//riJj483VqvVXHfddWbr1q1e+6msrDTTp0830dHRJjQ01IwdO9YcOnTIq+bkyZNm8uTJJiIiwkRERJjJkyeboqIir5qDBw+am2++2YSGhpro6Ggzffp0U1VVVed+dHq5iIi0Bm+uzjHJD31qLn8swxSU1P1z0l/V5/PbYowxvotZvlVSUoLNZsNut2sWSEREWqTMg0Xc8Zc1VLsMj43tzf8b1vm7X+Tn6vP5rXtdiYiItFDHSx3cuyCTapfhe33i+ek1l/p6SE1OQUdERKQFqnG5mf72Jo6VOOga25anf9jvOy/10hIp6IiIiLRA8z7fybqcQtpag3jlxwNoa72w08mbOwUdERGRFuaTr4/yt2/uTv7srX3pGtuKzrI6jYKOiIhIC7L7WCkPvb8FgLuHd2F0SoKPR+RbCjoiIiItRElVNXe/lUmF08U1XdszO7W7r4fkcwo6IiIiLYDbbZj9f1+z/0Q5ibY2/O8dVxIUqI95fQdERERagJdX7mPJ9mOEBAbw8o8H0L6t1ddD8gutcwm2iIhIC1FQUsWflu3ln+sOAvDbWy6nX1I73w7KjyjoiIiINEObDhXx0Htb2FNQ5tk27brLuOPqTj4clf9R0BEREWlmMrLz+EV6Fo4aNxYL9L3ExkNjejK0S4yvh+Z3FHRERESakf3Hyzwh58aesTx3Wz/ahYX4elh+S0FHRESkmXC5Db96bwuOGjfXdovhLz8ZSGBA67utQ33orCsREZFm4tklu9h4sIjwkEDm/aCvQk4daEZHRETEzxljeGn5Xl5esQ+AJ25J4ZJ2oT4eVfOgoCMiIuLHyhw1PPTeFhZvzQPg4TE9+eGAjj4eVfOhoCMiIuLHnvxkO4u35hEUYOGR7/Xi/w3r7OshNSsKOiIiIn7q0MkK3tt0GIC/33kV13Xv4OMRNT9ajCwiIuKn5i/fg8ttGN69g0LOBVLQERER8UO5hRW8v+kIAL8Y2c3Ho2m+FHRERET80BurD+ByG4Z1jaF/pyhfD6fZUtARERHxMyVV1byzIReAn12rxccXQ4uRRURE/ESFs4YnP93O17l2yhw1dItty3CtzbkoCjoiIiJ+4sUv9rBwfa7n658P74LFoqsfXwwFHRERET+wM7+Ev63KAeCh0T3p19HGkC7tfTyq5k9BR0RExMfcbsOvF2XjchvGpMRzz4guvh5Si6HFyCIiIj72zsZcMr+5Wedj43r7ejgtioKOiIiID+3ML2He5zsBuD+1Bwk23ayzIenQlYiIiI88t2QXLy3fi9tA74RIpgxJ9vWQWhwFHRERER9YsauAPy3bC8CYlHgeH3c5QYE60NLQFHRERESaWKXTxW8+ygbgp9dcyuPjLvfxiFouRUcREZEmdLS4krTX1pFbWEmCrQ0PpPbw9ZBaNM3oiIiINJF/7zjGA+9+TXFFNRHWIJ6/7QraWvVR3Jj03RUREWlkxhjmL9vLc0t3A9DnEhvzJ11JcvtwH4+s5VPQERERaWTPLtnFS8v3AXDn0Et5+Hs9sQYF+nhUrYOCjoiISCPKyM7zhJxHb+7Fz669zMcjal20GFlERKSRlFRV89hH2wC4d0QXhRwfUNARERFpJHM/20FBqYPOMeHMvLGbr4fTKinoiIiINILPtuaxcH0uAL//fgptgrUmxxcUdERERBrY8p0FPPT+FgDuGdGFoV1ifDyi1kuLkUVERBrQnI+38cbqAwAMTI7i/pu6+3ZArZyCjoiISAP5dMtR3lh9gAAL3DWsM7+8qTvBun+VTynoiIiIXCR7RTVLtufzu8U7ALjv+q66tYOfUNARERG5CEeKK/nBn1eTX1IFQMolkTrDyo/Uez7tyy+/ZNy4cSQmJmKxWPjwww+9nr/zzjuxWCxej8GDB3vVOBwOZsyYQUxMDOHh4YwfP57Dhw971RQVFZGWlobNZsNms5GWlkZxcbFXzaFDhxg3bhzh4eHExMQwc+ZMnE5nfVsSERG5IPbKan76+nryS6q4pF0oM2/oyj/+3yAdrvIj9f5JlJeX069fP+bPn3/OmtGjR5OXl+d5fPbZZ17Pz5o1i0WLFpGens6qVasoKytj7NixuFwuT82kSZPIysoiIyODjIwMsrKySEtL8zzvcrm4+eabKS8vZ9WqVaSnp/P+++/zwAMP1LclERGRenPWuLnnn5nsPlZGXKSVd+8ewv2pPYgOD/H10ORb6n3oasyYMYwZM+a8NVarlfj4+LM+Z7fbee2113jrrbcYOXIkAP/85z9JSkriiy++YNSoUezYsYOMjAzWrl3LoEGDAPjrX//KkCFD2LVrFz169GDJkiVs376d3NxcEhMTAXjuuee48847+f3vf09kZOQZ7+1wOHA4HJ6vS0pK6tu+iIgIxhgeWbSV1ftOEh4SyN/vvIrEdqG+HpacRaPMra1YsYLY2Fi6d+/O1KlTKSgo8DyXmZlJdXU1qampnm2JiYmkpKSwevVqANasWYPNZvOEHIDBgwdjs9m8alJSUjwhB2DUqFE4HA4yMzPPOq65c+d6DoXZbDaSkpIatG8REWmeqqpdvL3uEPe/k8Wz/9qFMea89R9/fZT3Mg8TGGBh/uT+XJ5oa6KRSn01+GLkMWPGcOutt5KcnExOTg6/+c1vuOGGG8jMzMRqtZKfn09ISAhRUVFer4uLiyM/Px+A/Px8YmNjz9h3bGysV01cXJzX81FRUYSEhHhqTvfwww9z//33e74uKSlR2BERaeWqql1M+ft61uUUerYNSI7i+p5nfg4BFJRW8fjHtfevmnlDN67vcfY68Q8NHnRuv/12z99TUlIYOHAgycnJLF68mIkTJ57zdcYYLBaL5+tv//1iar7NarVitVrr1IeIiLRs/9lznLfWHCTPXsXWI3baWoPoc4mNNftP8uK/9zCiR4czPk8Onaxg2lsbKa6opndCJPde38VHo5e6avRl4QkJCSQnJ7Nnzx4A4uPjcTqdFBUVedUVFBR4Zmji4+M5duzYGfs6fvy4V83pMzdFRUVUV1efMdMjIiLybV/tPcFdb2xkyfZjbD1iJyQwgL+kDeB/f3Ql1qAAsnKL+XLPCa/XHDxZzviXVrEzv5SYtiG8cPsVOruqGWj0n9DJkyfJzc0lISEBgAEDBhAcHMzSpUs9NXl5eWRnZzN06FAAhgwZgt1uZ/369Z6adevWYbfbvWqys7PJy8vz1CxZsgSr1cqAAQMauy0REWmmth62M+0fG3G63NzYM5Ynxl/OJzOGMbRrDB0irEwelAzAIx9s5WRZ7QksNS43s97JoriimssTI/lkxjB6xEf4sg2pI4v5rhVXpykrK2Pv3r0AXHnllTz//PNcf/31REdHEx0dzZw5c/jBD35AQkICBw4c4JFHHuHQoUPs2LGDiIjafxT33HMPn376KW+88QbR0dHMnj2bkydPkpmZSWBg7d1dx4wZw9GjR3n11VcBmDZtGsnJyXzyySdA7enlV1xxBXFxcTzzzDMUFhZy5513MmHCBP70pz/VqZeSkhJsNht2u/2sZ2mJiEjLsv94Gbe+soaT5U6GdmnP6z+9CmuQ913F7RXV3PLSKg6crGBAchQzbujKos1H+CjrKBFtgsiYdR2X6Awrn6rP53e9g86KFSu4/vrrz9g+ZcoUXn75ZSZMmMDmzZspLi4mISGB66+/nieffNJr0W9VVRUPPvggb7/9NpWVldx44438+c9/9qopLCxk5syZfPzxxwCMHz+e+fPn065dO0/NoUOHuPfee1m2bBmhoaFMmjSJZ599ts7rcBR0RERaj5Kqasb/qTbA9LnExsJpg2lrPftS1d3HSvn+S19R7nR5bf/fH13J+H6JZ32NNJ1GDTotiYKOiEjrYIzhnn9uImNbPpe0C+Wj6dcQ0/b8/1O87aid11blsGrPCXrER3Df9V0ZfFn7JhqxnE99Pr91rysREWnxXl65j4xt+QQHWnhpcv/vDDkAlyfaeP62Kxp/cNKotFxcRERatCXb8nnmX7sAmDP+cq5IaufbAUmTUtAREZEWa0deCbPeycIY+MmQZM8ZVdJ6KOiIiEiLVFBSxc/e3EiF08U1Xdvzm7G9fT0k8QGt0RERkRYn+4idqf/YSJ69ikvbh/HSpP66uF8rpaAjIiItSlZuMZP+upYKp4vLOoTz9ylX0S4sxNfDEh9R0BERkRZjb0Epd76+ngqniyGXtefVnwwgsk2wr4clPqSgIyIiLYIxhoc/2EpxRTVXJLXjb1MGEn6OCwJK66EDliIi0iKs3H2cDQeKCAkK4OUf91fIEUBBR0REWgC32/Dckt0A/GRwMgk23YtKainoiIhIs/fS8r1sPWInPCSQe0Z08fVwxI8o6IiISLO2YlcBz39RO5vz+LjLaV+H2ztI66GgIyIizZa9opoH39uCMTBpUCduuyrJ10MSP6OgIyIizdaTi7dzvNRBlw7hPKYrH8tZKOiIiEiztGjzYd7LPIzFAk//sC9tggN9PSTxQwo6IiLS7CzfWcDsd7cA8PPrujAgOdrHIxJ/paAjIiLNyokyB7PeycLlNky88hJ+NaqHr4ckfkxBR0REmpXfL96BvbKa3gmR/OGHfQkIsPh6SOLHFHRERKTZWL33BIs2H8Figacm9tEdyeU76V+IiIg0C44aF49+mA1A2uBkrkhq59sBSbOgoCMiIs3CKyv2s/9EOR0irMzWuhypIwUdERHxe1m5xcxfvgeAx8b2JrJNsI9HJM2Fgo6IiPg1e0U109/eRLXLMCYlnrF9E3w9JGlGFHRERMRvGWN48L2vOVxUSafoMP7ww75YLDrLSupOQUdERPzW618dYMn2Y4QEBvDSpP46ZCX1pqAjIiJ+6d87jvHUZzsA+PXNvejT0ebjEUlzpKAjIiJ+Z+3+k9yzYBM1bsP3r7yEnwxJ9vWQpJlS0BEREb9SVO5k5sLNOGvc3NQ7jqe1LkcugoKOiIj4DWMMjyzaSkGpg8s6hPO/d1ypqx/LRdG/HhER8Rv/3lHA59n5BAVYePH2KwkNCfT1kKSZU9ARERG/4KxxexYf/+zay7T4WBqEgo6IiPiFN1cfYP+JcmLahnDf9V18PRxpIRR0RETE597dmMtTn9fO5tx/Uw8idL0caSBBvh6AiIi0Xm634U/L9vLCF7sB+NHVnbjjqiQfj0paEgUdERHxiewjdn6/eAdr9p8E4K5hnXn05l46lVwalIKOiIg0qapqF09n7OLvX+UAYA0K4HcTUrh1oGZypOEp6IiISJPZfrSEWe9sZvexMgDG90vkwVE9SIoO8/HIpKVS0BERkSaxYN1B5ny8jWqXIaatlWd+2Jfre8b6eljSwinoiIhIozpZ5uB//72HN9ccBOCm3nHMm9iH9m2tPh6ZtAYKOiIi0uB2Hyvlofe3cLioEntFNU6XG4AHburO9Bu6asGxNBkFHRERaTDHSqr4cvdxnvx0OyVVNZ7t/TramHFDN0b2jvPh6KQ1UtAREZGLZozhlZX7eeZfO3Gb2m39O7VjzvjLiWgTzKXtwzSLIz6hoCMiIhdlZ34Jz/5rN1/sOAZAyiWRXN8jlntHdNVNOcXn6n0LiC+//JJx48aRmJiIxWLhww8/9HreGMOcOXNITEwkNDSUESNGsG3bNq8ah8PBjBkziImJITw8nPHjx3P48GGvmqKiItLS0rDZbNhsNtLS0iguLvaqOXToEOPGjSM8PJyYmBhmzpyJ0+msb0siInKBPt1ylDEv/ocvdhwjMMDCk7dczifTh/FAag+FHPEL9Q465eXl9OvXj/nz55/1+aeffprnn3+e+fPns2HDBuLj47npppsoLS311MyaNYtFixaRnp7OqlWrKCsrY+zYsbhcLk/NpEmTyMrKIiMjg4yMDLKyskhLS/M873K5uPnmmykvL2fVqlWkp6fz/vvv88ADD9S3JRERuQClVdXM+Xg7xsCNPWNZPHMYaUMu1SEq8S/mIgBm0aJFnq/dbreJj4838+bN82yrqqoyNpvNvPLKK8YYY4qLi01wcLBJT0/31Bw5csQEBASYjIwMY4wx27dvN4BZu3atp2bNmjUGMDt37jTGGPPZZ5+ZgIAAc+TIEU/NwoULjdVqNXa7vU7jt9vtBqhzvYiI/NfvF283yQ99aq5/ZrlxVLt8PRxpRerz+d2gdy/PyckhPz+f1NRUzzar1crw4cNZvXo1AJmZmVRXV3vVJCYmkpKS4qlZs2YNNpuNQYMGeWoGDx6MzWbzqklJSSExMdFTM2rUKBwOB5mZmWcdn8PhoKSkxOshIiL1U1Xt4vGPsvnLl/sB+M3Y3oQENejHiUiDadB/mfn5+QDExXmfPhgXF+d5Lj8/n5CQEKKios5bExt75tUyY2NjvWpOf5+oqChCQkI8NaebO3euZ82PzWYjKUn3VRERqa//eX+L5+J/dw/voqsbi19rlAh++vFZY8x3HrM9veZs9RdS820PP/wwdrvd88jNzT3vmERExFtGdj4fZh0lwAKvTRnI/4zp6eshiZxXgwad+Ph4gDNmVAoKCjyzL/Hx8TidToqKis5bc+zYsTP2f/z4ca+a09+nqKiI6urqM2Z6TrFarURGRno9RESkbo4WV/Loh1uB2pmcG3vp4n/i/xo06HTu3Jn4+HiWLl3q2eZ0Olm5ciVDhw4FYMCAAQQHB3vV5OXlkZ2d7akZMmQIdrud9evXe2rWrVuH3W73qsnOziYvL89Ts2TJEqxWKwMGDGjItkREWj17RTVT/r6eE2VOesZH8IuR3Xw9JJE6qfcFA8vKyti7d6/n65ycHLKysoiOjqZTp07MmjWLp556im7dutGtWzeeeuopwsLCmDRpEgA2m4277rqLBx54gPbt2xMdHc3s2bPp06cPI0eOBKBXr16MHj2aqVOn8uqrrwIwbdo0xo4dS48ePQBITU2ld+/epKWl8cwzz1BYWMjs2bOZOnWqZmpERBpQbmEF097KZE9BGfGRbXjtzquwBukaOdJM1PeUruXLlxvgjMeUKVOMMbWnmD/++OMmPj7eWK1Wc91115mtW7d67aOystJMnz7dREdHm9DQUDN27Fhz6NAhr5qTJ0+ayZMnm4iICBMREWEmT55sioqKvGoOHjxobr75ZhMaGmqio6PN9OnTTVVVVZ170enlIiLnt3rvCXPFE/8yyQ99agY8ucTsyNPvS/G9+nx+W4wxxoc5y6dKSkqw2WzY7XbNAomInCZ9/SF+/WE2Lrch5ZJI/pI2kMR2ob4elki9Pr91rysRETnD8p0FPLJoK24DE65IZN4P+tImWIerpPlR0BERES8780uYuXAzbgO3D0xi3g/66LYO0mzpUpYiIuKRc6KcH/9tPaWOGq6+NJonJ6Qo5EizpqAjIiIAfLn7OLe+soYTZQ56xkfw158M1K0dpNnToSsRkVbOUePi6YxdvLYqB4AecRG8ddcgbGHBPh6ZyMVT0BERacX2HCtlZnoWO/Jqb3L8kyHJPPK9Xlp4LC2Ggo6ISCv1yddHmf3u1zhq3ESHh/DMD/vqtg7S4ijoiIi0QhnZ+cx6JwuX23Bd9w48e2tfYiPa+HpYIg1OQUdEpJVZsauAGQs34XIbfjigI0//oC8BATqzSlomLacXEWlFVu05wc/fyqTaZbi5bwJ/UMiRFk4zOiIirYDLbXjxi93MX74Xt4Ebe8bywm1XEKiQIy2cgo6ISAtXVe3iF+mb+de2YwD8cEBHfjchRdfIkVZBQUdEpAXbf7yMX76TxdeH7YQEBvD0D/sy4cpLfD0skSajoCMi0kKt2FXA3f/MpKraTWSbIF5NG8iQLu19PSyRJqWgIyLSAmUfsXPvgk1UVbsZ2qU9z97aj8R2ob4elkiTU9AREWlBjDF8sOkIv/10OxVOF0O7tOeNn16t9TjSainoiIi0EIeLKnhkUTZf7j4OQL+ONl7+8QCFHGnVFHRERJq5U7M4j32UTbnTRUhQALNGdmPqtZcRHKiQI62bgo6ISDPlchu+2HGM11blsD6nEICByVH84Yd96dKhrY9HJ+IfFHRERJqhT7cc5Q8ZO8ktrAQgKMDCrJHduGdEV10EUORbFHRERJoRt9vwp2V7eeGL3QC0Cwtm0tWdSBuSTIJNZ1WJnE5BR0Skmcg+Yuc3H2Wz+VAxAFOv7cz9N/UgNCTQtwMT8WMKOiIizcCynce455+bcNS4CQ8J5NGxvfnR1Z18PSwRv6egIyLix9xuw9+/ymHu5ztxuQ0jenTgDz/oS1xkG18PTaRZUNAREfFTZY4a7luwiZXfXBdnYv9L+MMP+uqUcZF6UNAREfFD+fYqpr21kS2H7bQJDuA3Y3sz6epOWCw6o0qkPhR0RET8iL2ymldW7uP1r3KoqnYTHR7CGz+9ir4d2/l6aCLNkoKOiIgf2H60hI+yjpC+IRd7ZTUA/Tu145lb++nifyIXQUFHRMSH3G7DC1/s5k/L9nq2dY9ry69G9eTGXrE6VCVykRR0RER8pKCkitnvbfHchDO1dxwT+1/CTb3jdXVjkQaioCMi4gMZ2fk8/MEWiiqqsQYFMHdiHyb27+jrYYm0OAo6IiJNqMxRw28/2cb/bTwMQO+ESF684wq6xUX4eGQiLZOCjohIE6iqdvHZ1jxe/PceDp6swGKBu4d34ZcjuxMSpOviiDQWBR0RkUZU43LzfxsP88IXuzle6gDgknahPH9bPwZd1t7HoxNp+RR0REQagdtt+PpwMb/5KJvsIyUAJNjaMOnqTky55lIi2wT7eIQirYOCjohIA9hbUMqbqw/y2dY8atwGt9tQ6qgBILJNELNGdufHg5N1mEqkiSnoiIhchKpqF88v3c1rq3JwuY3Xc9agAEanxPPrm3sRG6GbcIr4goKOiMgFKix3MvUfG8k8WATAjT1jufOaS0mwtaHGbejSoa1uwCniYwo6IiL1lFtYwWurcvj466MUljuJbBPE87ddwcjecb4emoicRkFHRKSOnDVuXlq+l1dW7sNR4wYguX0Yf/vJQF0HR8RPKeiIiNTB/uNl/CI9i61H7AAMviyanw/vwrVdYwjS4SkRv6WgIyLyHb7YfoxfvpNFqaOGdmHBPHlLCmP7JuiGmyLNgIKOiMg5uN2G/122hz9+sQeAqy6N4k8/6k+8TWdQiTQXDT7fOmfOHCwWi9cjPj7e87wxhjlz5pCYmEhoaCgjRoxg27ZtXvtwOBzMmDGDmJgYwsPDGT9+PIcPH/aqKSoqIi0tDZvNhs1mIy0tjeLi4oZuR0RaqcNFFUx5fb0n5EwZksyCnw1WyBFpZhrlwPLll19OXl6e57F161bPc08//TTPP/888+fPZ8OGDcTHx3PTTTdRWlrqqZk1axaLFi0iPT2dVatWUVZWxtixY3G5XJ6aSZMmkZWVRUZGBhkZGWRlZZGWltYY7YhIK7N4Sx6jXviS/+w5QUhQAM/8sC9P3JKii/2JNEONcugqKCjIaxbnFGMMf/zjH/n1r3/NxIkTAXjzzTeJi4vj7bff5uc//zl2u53XXnuNt956i5EjRwLwz3/+k6SkJL744gtGjRrFjh07yMjIYO3atQwaNAiAv/71rwwZMoRdu3bRo0ePxmhLRFq4fHsVr6zcxxurDwC1h6rm/aAvXTq09e3AROSCNcr/nuzZs4fExEQ6d+7MHXfcwf79+wHIyckhPz+f1NRUT63VamX48OGsXr0agMzMTKqrq71qEhMTSUlJ8dSsWbMGm83mCTkAgwcPxmazeWrOxuFwUFJS4vUQEQH4x5oDXPv0Mk/ImXptZxZOHayQI9LMNfiMzqBBg/jHP/5B9+7dOXbsGL/73e8YOnQo27ZtIz8/H4C4OO+LasXFxXHw4EEA8vPzCQkJISoq6oyaU6/Pz88nNjb2jPeOjY311JzN3LlzeeKJJy6qPxFpWUqrqnk6Yxdvra39HXT1pdHcd0NXhnfv4OORiUhDaPCgM2bMGM/f+/Tpw5AhQ+jSpQtvvvkmgwcPBjjjlExjzHeepnl6zdnqv2s/Dz/8MPfff7/n65KSEpKSks7fkIi0SDUuN+9szOX5Jbs5We4E4Feje3DP8C46bVykBWn008vDw8Pp06cPe/bsYcKECUDtjExCQoKnpqCgwDPLEx8fj9PppKioyGtWp6CggKFDh3pqjh07dsZ7HT9+/IzZom+zWq1YrdaGaEtEmqmqahefbsnj1ZX72FNQBsBlHcJ5bGxvRvQ4c6ZYRJq3Rj+FwOFwsGPHDhISEujcuTPx8fEsXbrU87zT6WTlypWeEDNgwACCg4O9avLy8sjOzvbUDBkyBLvdzvr16z0169atw263e2pERL4t+4idX733NVf97gtmv/s1ewrKsIUG8/i43vxr1nUKOSItVIPP6MyePZtx48bRqVMnCgoK+N3vfkdJSQlTpkzBYrEwa9YsnnrqKbp160a3bt146qmnCAsLY9KkSQDYbDbuuusuHnjgAdq3b090dDSzZ8+mT58+nrOwevXqxejRo5k6dSqvvvoqANOmTWPs2LE640pEPHbll/J/G3NZtecEu4799xIWibY2pA25lEmDOmELDfbhCEWksTV40Dl8+DA/+tGPOHHiBB06dGDw4MGsXbuW5ORkAH71q19RWVnJvffeS1FREYMGDWLJkiVERPz3hngvvPACQUFB3HbbbVRWVnLjjTfyxhtvEBgY6KlZsGABM2fO9JydNX78eObPn9/Q7YhIM+N2G/61LZ831xxg7f5Cz/agAAs3901g0tWduOrSaAICtA5HpDWwGGOMrwfhKyUlJdhsNux2O5GRkb4ejohcpN3HSvmf97ew6VAxAIEBFm7qFce4fokM7dKeqPAQ3w5QRBpEfT6/da8rEWn2thwuZv6yvSzdcQxjoK01iClDk5k8KJnEdqG+Hp6I+JCCjog0W9uPlvD80t18seO/Z2GOvjyex8f3JsGmgCMiCjoi0gztLSjlhaV7WLw1D4AAC0y48hLuHdGFrrER3/FqEWlNFHREpNlwuw0vr9zH80t343LXLi8c1y+RX9zYja6xulWDiJxJQUdEmoWTZQ5++X9f8+Xu4wCM7BXH7FHd6RmvEwlE5NwUdETE763PKWTmws3kl1TRJjiA345P4daBHXWrBhH5Tgo6IuK3Th2qem7JLtwGunQI58+TB9AjXutwRKRuFHRExC+dKHPwy3ey+M+eEwBMvPISnpyQQrhVv7ZEpO70G0NE/M7qfSeYlZ5FQamj9lDVLSncOkCHqkSk/hR0RMQvFJRUsTankA82HWbFrtoFx11j2/Lnyf3pHqdDVSJyYRR0RKRJudyGo8WVlFRVYwx8suUo/8rO58DJCk9NYICF269K4tGbexEWol9TInLh9BtERJqEy234y5f7mb9sD+VO1xnPWyzQOyGSIZe158eDk7k0JtwHoxSRlkZBR0QaVUFJFX9blcO/dxxj3/FyAEICA4gMDcZZ4+LKTlHccVUSQ7vGYAsN9vFoRaSlUdARkUaTc6KcH/9tHUeKK4Ham20+Nq43P+jfkcAALSwWkcanoCMijWL70RJ+8vf1nChz0DkmnF/e1J3rusXQLizE10MTkVZEQUdEGlSNy03Gtnwe+WArJVU19E6I5B93XU1MW6uvhyYirZCCjohctM2HivjHmoNsOFBIcUU1ZY4aAAYmR/HanVdp7Y2I+IyCjohcELfb8Fl2Hn/9Tw5f5xZ7PRfTNoQ7rurEvdd30enhIuJT+g0kIvXichuWbMtn/vK9bDtaAtSeRTW2XwI/7N+R2EgrnaLDCQkK8PFIRUQUdESkjo4UV/KP1Qf45OujHLVXAbVnUd01rDNpQ5K1BkdE/JKCjoic14kyB69/lcPf/pODo8YNQLuwYNIGJ/PTazoTHa6zqETEfynoiMhZGWN4afle/nfZXpzfBJyrO0fz06GXcn3PWNoEB/p4hCIi301BR0TOcOBEOS8t38u7mYcB6NfRxj0jujLq8jjdQVxEmhUFHREBYP/xMhauP8S/dxSw/0TtrRoCLPDbW1KYPKiTAo6INEsKOiKtmDGGzINF/OXL/SzdcQxjarcHBVi4unM0U6+7jOt7xPp2kCIiF0FBR6QVyi2s4MPNR/gw64jnRpsAN/aM5QcDOjKsWwyRbXSRPxFp/hR0RFqBgtIqVuw8zsaDhWw8WMT+b4Uba1AA37/yEn527WV0jW3rw1GKiDQ8BR2RFsrlNqzcXUD6+lz+vbMAl9t4nguwwNAuMdxyRSKjU+KJ0OyNiLRQCjoiLUhVtYttR+2s2HWcdzceJr+kyvNcv6R2DO3SnoHJUfTvFEWUrn8jIq2Ago5IM+V2G3YdK2Xt/pOs2XeSzbnFHC91eNVEhQUzsX9Hbr8qie5xET4aqYiI7yjoiDQDxhgOFVbw1d6TbM+zc7S4is2HiiiqqD6jNiosmEGd23Nz3wRSL4/DGqQL+4lI66WgI+KnjpVUsXrfCb7aWztjc6S48oyasJBABl4azZDL2nN152g6x4QTFRasa96IiHxDQUfED7jchu1HS9ieZyf7SAmr953wOu0bIDjQwpWdohiYHEVCu1B6J0TQt2M7ggN1l3ARkXNR0BFpYlXVLg4XVZJbVMGBE+Wszylk9b6T2Cu9D0NZLNDnEhtDurTnmi4xDLw0irAQ/ScrIlIf+q0p0gicNW7y7VUcLq6gtKqGwnInX2w/xtYjdgpOWzB8SoQ1iH5J7egRH8HVnaMZ3Lk9tjCd9i0icjEUdETqqcblJs9eRW5RBbmFFRw8WcGBk+WcKHNSXOGkqKKaE2UOz+0UziY8JJCk6DA6RoXRt6ONYd1i6HuJjSAdhhIRaVAKOiLnUOaoYfexUrYfLWFnfgk5J8rJLazkaHElNe7zpJhvWIMCuCQqFFtoMG2CAhl8WXuu6x7Dpe3DaacFwyIiTUJBR1oVYwzHyxwcLqrkcFElBSVVnChzcrLMQUlVNZXVbgpKqjhaXElJVc059xMSGEDHqFCSosPoFB1Gcvsw4iLbEBUWQruwYOIi2xDTNkRhRkTExxR0pEVwuw0lVdUUltceOioqd1JU4aSg1MGR4spvgk0FR4oqcdS467zf2AgrvRIi6ZUQSdfYtnSKDiMpOpS4iDYEBCjEiIj4OwUd8Ts1Ljf2ymqKvlnvUlheu/alsLz6mz9rtxdXOCmscFL8zd/rcDQJqL3PU4ItlEuiQomPbENMWyvt24bUHmIKDqRDhJVEWxsS2oXS1qr/REREmjP9FpeLYoyh5JuziiqdLmrcbqpdhuIKJyfLnbjdBgMYAwZT++c3ryk6NftSUTv7curr00+zro+21iCiwoOJCgshKiyE9m1D6BgVRseo0NpDTVFhxNva6NozIiKthIJOK+GocVFaVUNZVQ1ljpravztqKHNUU1ZVQ6njv89VuwwutxuXG9zfnDoUGhJYG1Aqayipqg0nJ0qdnCx3UO2q41RKPUW2CSI6PIR2YSHf/BlMdFgIUeEh3wSZYK+/twsLISRIAUZERP5LQcdHqqpdFJbXHoYpc9RQWe3CUe2istpFVbUbZ03tw1HjoqSqhuIKJ/bKapw1blymdk2KxQLBgQEEBViwWKDaZah2uXHUuD2hpeybAON01X1dyoVoaw0iNCSQ4AALQYEBRIYG0T7c6hkbWAiw1F4Ez4KFCK8QE+wJM1FhtbMxttBgnWotIiIXTUHnLIornJRW1YaPSmdt+KisdlHldFFVUxtEqqr/+2eN201gQG3gCAq01P4ZUPshXVTh9JzVc7L8mz/LnJQ6zn1GT2MKDwkkok0wbdsE0dYaRMQ3f7a1Bnm2BQcGEBhgIcBi4VTWKHe4CAywYAsNJjI0iHahIZ61LdHhIbQJ1o0jRUTE/zT7oPPnP/+ZZ555hry8PC6//HL++Mc/cu21117UPmcs3Mx/9pxooBGeW1CAhejwECLaBNEmOJDQ4EDaBAfSJjgAa1AgIUEBhHwzO9IuLITI0GCsQQEEWiwEBlhwG0ONy1DtdmNM7SnPQYEWQoICasPMt4NMmyDCQ4II1JlCIiLSijTroPPOO+8wa9Ys/vznP3PNNdfw6quvMmbMGLZv306nTp0ueL+h34SO0JBT4SOA0JBA2gSdCiK12079GRQQgNsYz9qWGpeh5ptFuFFhwbQPr535iGkbQnS4lejwEDq0tRIZGqTrrIiIiDQiizHnu1C9fxs0aBD9+/fn5Zdf9mzr1asXEyZMYO7cud/5+pKSEmw2G3a7ncjISM92Y4wCiIiIiJ861+f32TTb1Z5Op5PMzExSU1O9tqemprJ69eqzvsbhcFBSUuL1OBuFHBERkZah2QadEydO4HK5iIuL89oeFxdHfn7+WV8zd+5cbDab55GUlNQUQxUREREfabZB55TTZ1/Od9jp4Ycfxm63ex65ublNMUQRERHxkWa7GDkmJobAwMAzZm8KCgrOmOU5xWq1YrVam2J4IiIi4gea7YxOSEgIAwYMYOnSpV7bly5dytChQ300KhEREfEnzXZGB+D+++8nLS2NgQMHMmTIEP7yl79w6NAh7r77bl8PTURERPxAsw46t99+OydPnuS3v/0teXl5pKSk8Nlnn5GcnOzroYmIiIgfaNbX0blY9TkPX0RERPxDq7iOjoiIiMh3UdARERGRFktBR0RERFosBR0RERFpsRR0REREpMVS0BEREZEWq1lfR+dinTqz/lx3MRcRERH/c+pzuy5XyGnVQae0tBRAdzEXERFphkpLS7HZbOetadUXDHS73Rw9epSIiIhz3vH8YpWUlJCUlERubq5PLkp41VVXsWHDhiZ/X1/3Da23d/Xd9Fpr7+pbv9+a2qm+jTGUlpaSmJhIQMD5V+G06hmdgIAAOnbs2CTvFRkZ6ZN/FIGBgT696rOv+obW27v69p3W2rv6bnqttfdv9/1dMzmnaDFyC3fffff5egg+01p7V9+tT2vtvbX2Da239wvpu1UfumoKrfV+Wq21b2i9vbfWvqH19q6+W1ff0Dx714xOI7NarTz++ONYrVZfD6VJtda+ofX23lr7htbbu/puXX1D8+xdMzoiIiLSYmlGR0RERFosBR0RERFpsRR0REREpMVS0BEREZEWS0GnDr788kvGjRtHYmIiFouFDz/80Ov5Y8eOceedd5KYmEhYWBijR49mz549XjUjRozAYrF4Pe644w6vmqKiItLS0rDZbNhsNtLS0iguLm7k7s6tIfoGWLNmDTfccAPh4eG0a9eOESNGUFlZ6Xne3/qGi+/9wIEDZ/y8Tz3effddT52/9d4QP/P8/HzS0tKIj48nPDyc/v37895773nVtMS+9+3bx/e//306dOhAZGQkt912G8eOHfOq8be+586dy1VXXUVERASxsbFMmDCBXbt2edUYY5gzZw6JiYmEhoYyYsQItm3b5lXjcDiYMWMGMTExhIeHM378eA4fPuxV01J7/8tf/sKIESOIjIzEYrGctSd/6r0h+i4sLGTGjBn06NGDsLAwOnXqxMyZM7Hb7V778Ze+FXTqoLy8nH79+jF//vwznjPGMGHCBPbv389HH33E5s2bSU5OZuTIkZSXl3vVTp06lby8PM/j1Vdf9Xp+0qRJZGVlkZGRQUZGBllZWaSlpTVqb+fTEH2vWbOG0aNHk5qayvr169mwYQPTp0/3umS3v/UNF997UlKS1886Ly+PJ554gvDwcMaMGePZl7/13hA/87S0NHbt2sXHH3/M1q1bmThxIrfffjubN2/21LS0vsvLy0lNTcVisbBs2TK++uornE4n48aNw+12e/blb32vXLmS++67j7Vr17J06VJqampITU31+nk+/fTTPP/888yfP58NGzYQHx/PTTfd5LlXIMCsWbNYtGgR6enprFq1irKyMsaOHYvL5fLUtNTeKyoqGD16NI888sg538ufem+Ivo8ePcrRo0d59tln2bp1K2+88QYZGRncddddXu/lN30bqRfALFq0yPP1rl27DGCys7M922pqakx0dLT561//6tk2fPhw84tf/OKc+92+fbsBzNq1az3b1qxZYwCzc+fOBu3hQlxo34MGDTKPPvroOffr730bc+G9n+6KK64w/+///T/P1/7e+4X2HR4ebv7xj3947Ss6Otr87W9/M8a0zL7/9a9/mYCAAGO32z01hYWFBjBLly41xvh/38YYU1BQYACzcuVKY4wxbrfbxMfHm3nz5nlqqqqqjM1mM6+88ooxxpji4mITHBxs0tPTPTVHjhwxAQEBJiMjwxjTcnv/tuXLlxvAFBUVeW33994vtu9T/u///s+EhISY6upqY4x/9a0ZnYvkcDgAaNOmjWdbYGAgISEhrFq1yqt2wYIFxMTEcPnllzN79myv/ytYs2YNNpuNQYMGebYNHjwYm83G6tWrG7mL+qtL3wUFBaxbt47Y2FiGDh1KXFwcw4cP9/q+NLe+oX4/81MyMzPJysry+j+e5tZ7XfseNmwY77zzDoWFhbjdbtLT03E4HIwYMQJomX07HA4sFovXRdTatGlDQECAp6Y59H3q0EN0dDQAOTk55Ofnk5qa6qmxWq0MHz7cM+bMzEyqq6u9ahITE0lJSfHUtNTe68Lfe2+ovk9dKTkoqPYWmv7Ut4LORerZsyfJyck8/PDDFBUV4XQ6mTdvHvn5+eTl5XnqJk+ezMKFC1mxYgW/+c1veP/995k4caLn+fz8fGJjY8/Yf2xsLPn5+U3SS33Upe/9+/cDMGfOHKZOnUpGRgb9+/fnxhtv9KxvaG59Q91/5t/22muv0atXL4YOHerZ1tx6r2vf77zzDjU1NbRv3x6r1crPf/5zFi1aRJcuXYCW2ffgwYMJDw/noYceoqKigvLych588EHcbrenxt/7NsZw//33M2zYMFJSUgA844qLi/OqjYuL8zyXn59PSEgIUVFR561pib3XhT/33lB9nzx5kieffJKf//znnm3+1LeCzkUKDg7m/fffZ/fu3URHRxMWFsaKFSsYM2YMgYGBnrqpU6cycuRIUlJSuOOOO3jvvff44osv2LRpk6fGYrGcsX9jzFm3+1pd+j61NuHnP/85P/3pT7nyyit54YUX6NGjB3//+989+2pOfUPdf+anVFZW8vbbb59x/BqaV+917fvRRx+lqKiIL774go0bN3L//fdz6623snXrVk9NS+u7Q4cOvPvuu3zyySe0bdvWcy+g/v37e31v/Lnv6dOns2XLFhYuXHjGc6ePry5jPr2mNfX+Xfu40P00tIbou6SkhJtvvpnevXvz+OOPn3cf59tPYwpq0ndroQYMGEBWVhZ2ux2n00mHDh0YNGgQAwcOPOdr+vfvT3BwMHv27KF///7Ex8efcYYGwPHjx89I1v7iu/pOSEgAoHfv3l6v69WrF4cOHQJoln1D/X7m7733HhUVFfzkJz/x2t4ce/+uvvft28f8+fPJzs7m8ssvB6Bfv3785z//4aWXXuKVV15pkX0DpKamsm/fPk6cOEFQUBDt2rUjPj6ezp07A/79854xYwYff/wxX375JR07dvRsj4+PB2r/7/zUf89Qe1j61Jjj4+NxOp0UFRV5zeoUFBR4ZjBbau914a+9N0TfpaWljB49mrZt27Jo0SKCg4O99uMvfWtGpwHZbDY6dOjAnj172LhxI7fccss5a7dt20Z1dbXnH9KQIUOw2+2sX7/eU7Nu3TrsdrvX4Q5/dK6+L730UhITE884dXH37t0kJycDzbtvqNvP/LXXXmP8+PF06NDBa3tz7v1cfVdUVAB4nVUHtWtaTs3wtcS+vy0mJoZ27dqxbNkyCgoKGD9+POCffRtjmD59Oh988AHLli3zhLJTOnfuTHx8PEuXLvVsczqdrFy50jPmAQMGEBwc7FWTl5dHdna2p6al9l4X/tZ7Q/VdUlJCamoqISEhfPzxx15r2MDP+m7Spc/NVGlpqdm8ebPZvHmzAczzzz9vNm/ebA4ePGiMqV1tvnz5crNv3z7z4YcfmuTkZDNx4kTP6/fu3WueeOIJs2HDBpOTk2MWL15sevbsaa688kpTU1PjqRs9erTp27evWbNmjVmzZo3p06ePGTt2bJP3e8rF9m2MMS+88IKJjIw07777rtmzZ4959NFHTZs2bczevXs9Nf7WtzEN07sxxuzZs8dYLBbz+eefn/V9/K33i+3b6XSarl27mmuvvdasW7fO7N271zz77LPGYrGYxYsXe+paWt/GGPP3v//drFmzxuzdu9e89dZbJjo62tx///1eNf7W9z333GNsNptZsWKFycvL8zwqKio8NfPmzTM2m8188MEHZuvWreZHP/qRSUhIMCUlJZ6au+++23Ts2NF88cUXZtOmTeaGG24w/fr18+vfbw3Ve15entm8ebP561//agDz5Zdfms2bN5uTJ096avyp94bou6SkxAwaNMj06dPH7N2712s//vgzV9Cpg1OnDZ7+mDJlijHGmBdffNF07NjRBAcHm06dOplHH33UOBwOz+sPHTpkrrvuOhMdHW1CQkJMly5dzMyZM73+QzDGmJMnT5rJkyebiIgIExERYSZPnnzGqYpN6WL7PmXu3LmmY8eOJiwszAwZMsT85z//8Xre3/o2puF6f/jhh03Hjh2Ny+U66/v4W+8N0ffu3bvNxIkTTWxsrAkLCzN9+/Y943Tzltj3Qw89ZOLi4kxwcLDp1q2bee6554zb7faq8be+z9YzYF5//XVPjdvtNo8//riJj483VqvVXHfddWbr1q1e+6msrDTTp0830dHRJjQ01IwdO9YcOnTIq6al9v74449/5378qfeG6Ptc/70AJicnx1PnL31bjDGmYeaGRERERPyL1uiIiIhIi6WgIyIiIi2Wgo6IiIi0WAo6IiIi0mIp6IiIiEiLpaAjIiIiLZaCjoiIiLRYCjoiIiLSYinoiEizNGLECGbNmuXrYYiIn1PQEZEWb8WKFVgsFoqLi309FBFpYgo6IiIi0mIp6IiI3ysvL+cnP/kJbdu2JSEhgeeee87r+X/+858MHDiQiIgI4uPjmTRpEgUFBQAcOHCA66+/HoCoqCgsFgt33nknAMYYnn76aS677DJCQ0Pp168f7733XpP2JiKNS0FHRPzegw8+yPLly1m0aBFLlixhxYoVZGZmep53Op08+eSTfP3113z44Yfk5OR4wkxSUhLvv/8+ALt27SIvL48XX3wRgEcffZTXX3+dl19+mW3btvHLX/6SH//4x6xcubLJexSRxqG7l4uIXysrK6N9+/b84x//4PbbbwegsLCQjh07Mm3aNP74xz+e8ZoNGzZw9dVXU1paStu2bVmxYgXXX389RUVFtGvXDqidJYqJiWHZsmUMGTLE89qf/exnVFRU8PbbbzdFeyLSyIJ8PQARkfPZt28fTqfTK4xER0fTo0cPz9ebN29mzpw5ZGVlUVhYiNvtBuDQoUP07t37rPvdvn07VVVV3HTTTV7bnU4nV155ZSN0IiK+oKAjIn7tuyady8vLSU1NJTU1lX/+85906NCBQ4cOMWrUKJxO5zlfdyoMLV68mEsuucTrOavVevEDFxG/oKAjIn6ta9euBAcHs3btWjp16gRAUVERu3fvZvjw4ezcuZMTJ04wb948kpKSANi4caPXPkJCQgBwuVyebb1798ZqtXLo0CGGDx/eRN2ISFNT0BERv9a2bVvuuusuHnzwQdq3b09cXBy//vWvCQioPZeiU6dOhISE8Kc//Ym7776b7OxsnnzySa99JCcnY7FY+PTTT/ne975HaGgoERERzJ49m1/+8pe43W6GDRtGSUkJq1evpm3btkyZMsUX7YpIA9NZVyLi95555hmuu+46xo8fz8iRIxk2bBgDBgwAoEOHDrzxxhu8++679O7dm3nz5vHss896vf6SSy7hiSee4H/+53+Ii4tj+vTpADz55JM89thjzJ07l169ejFq1Cg++eQTOnfu3OQ9ikjj0FlXIiIi0mJpRkdERERaLAUdERERabEUdERERKTFUtARERGRFktBR0RERFosBR0RERFpsRR0REREpMVS0BEREZEWS0FHREREWiwFHREREWmxFHRERESkxfr/zvXufc/dBV8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To see all the functionality provided by the `pyfredapi` library, please refer to the [official documentation](https://pyfredapi.readthedocs.io/en/latest/).\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3", "path": "/usr/local/share/jupyter/kernels/python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.5" } }, "nbformat": 4, "nbformat_minor": 4 }